安徽省定遠(yuǎn)啟明中學(xué)2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
安徽省定遠(yuǎn)啟明中學(xué)2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
安徽省定遠(yuǎn)啟明中學(xué)2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
安徽省定遠(yuǎn)啟明中學(xué)2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
安徽省定遠(yuǎn)啟明中學(xué)2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省定遠(yuǎn)啟明中學(xué)2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)的最大值是2,則的值為()A. B. C. D.2.直線的傾斜角大?。ǎ〢. B. C. D.3.已知向量、滿足,且,則為()A. B.6 C.3 D.4.已知向量,且,則的值是()A. B. C.3 D.5.函數(shù)的最小正周期為,則圖象的一條對稱軸方程是()A. B. C. D.6.為了得到函數(shù),(x∈R)的圖象,只需將(x∈R)的圖象上所有的點(diǎn)().A.向右平移個單位 B.向左平移個單位C.向右平移個單位 D.向左平移個單位7.已知x,y為正實(shí)數(shù),則()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx?2lgyC.2lgx?lgy=2lgx+2lgy D.2lg(xy)=2lgx?2lgy8.已知等邊三角形ABC的邊長為1,,那么().A.3 B.-3 C. D.9.過曲線的左焦點(diǎn)且和雙曲線實(shí)軸垂直的直線與雙曲線交于點(diǎn)A,B,若在雙曲線的虛軸所在的直線上存在—點(diǎn)C,使得,則雙曲線離心率e的最小值為()A. B. C. D.10.設(shè)α,β為兩個不同的平面,直線l?α,則“l(fā)⊥β”是“α⊥β”成立的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.已知一個扇形的周長為4,則扇形面積的最大值為______.12.已知數(shù)列的通項公式,那么使得其前項和大于7.999的的最小值為______.13.已知,則的值為.14.化簡:________15.將一個圓錐截成圓臺,已知截得的圓臺的上、下底面面積之比是1:4,截去的小圓錐母線長為2,則截得的圓臺的母線長為________.16.在中,,是線段上的點(diǎn),,若的面積為,當(dāng)取到最大值時,___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在等差數(shù)列{an}中,2a9=a12+13,a3=7,其前n項和為Sn.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列{}的前n項和Tn,并證明Tn<.18.已知曲線上的任意一點(diǎn)到兩定點(diǎn)、距離之和為,直線交曲線于兩點(diǎn),為坐標(biāo)原點(diǎn).(1)求曲線的方程;(2)若不過點(diǎn)且不平行于坐標(biāo)軸,記線段的中點(diǎn)為,求證:直線的斜率與的斜率的乘積為定值;(3)若直線過點(diǎn),求面積的最大值,以及取最大值時直線的方程.19.已知.(Ⅰ)化簡;(Ⅱ)已知,求的值.20.一個工廠在某年里連續(xù)10個月每月產(chǎn)品的總成本y(萬元)與該月產(chǎn)量x(萬件)之間有如下一組數(shù)據(jù):x1.081.121.191.281.361.481.591.681.801.87y2.252.372.402.552.642.752.923.033.143.26(1)通過畫散點(diǎn)圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;②通過建立的y關(guān)于x的回歸方程,估計某月產(chǎn)量為1.98萬件時,此時產(chǎn)品的總成本為多少萬元?(均精確到0.001)附注:①參考數(shù)據(jù):=14.45,=27.31,=0.850,=1.042,=1.1.②參考公式:相關(guān)系數(shù):r=.回歸方程=x+中斜率和截距的最小二乘估計公式分別為:=,=-21.已知角的頂點(diǎn)與原點(diǎn)重合,其始邊與軸正半軸重合,終邊與單位圓交于點(diǎn),若,且.(1)求的值;(2)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)誘導(dǎo)公式以及兩角和差的正余弦公式化簡,根據(jù)輔助角公式結(jié)合范圍求最值取得的條件即可得解.【詳解】由題函數(shù),最大值是2,所以,平方處理得:,所以,,所以.故選:B【點(diǎn)睛】此題考查根據(jù)三角函數(shù)的最值求參數(shù)的取值,考查對三角恒等變換的綜合應(yīng)用.2、B【解析】

化簡得到,根據(jù)計算得到答案.【詳解】直線,即,,,故.故選:.【點(diǎn)睛】本題考查了直線的傾斜角,意在考查學(xué)生的計算能力.3、A【解析】

先由可得,即可求得,再對平方處理,進(jìn)而求解【詳解】因?yàn)?所以,則,所以,則,故選:A【點(diǎn)睛】本題考查向量的模,考查向量垂直的數(shù)量積表示,考查運(yùn)算能力4、A【解析】

由已知求得,然后展開兩角差的正切求解.【詳解】解:由,且,得,即.,故選A.【點(diǎn)睛】本題考查數(shù)量積的坐標(biāo)運(yùn)算,考查兩角差的正切,是基礎(chǔ)題.5、D【解析】

先根據(jù)函數(shù)的周期求出的值,求出函數(shù)的對稱軸方程,然后利用賦值法可得出函數(shù)圖象的一條對稱軸方程.【詳解】由于函數(shù)的最小正周期為,則,,令,解得.當(dāng)時,函數(shù)圖象的一條對稱軸方程為.故選:D.【點(diǎn)睛】本題考查利用正弦型函數(shù)的周期求參數(shù),同時也考查了正弦型函數(shù)圖象對稱軸方程的計算,解題時要結(jié)合正弦函數(shù)的基本性質(zhì)來進(jìn)行求解,考查運(yùn)算求解能力,屬于中等題.6、D【解析】

根據(jù)函數(shù)的平移原則,即可得出結(jié)果.【詳解】因?yàn)椋?,所以為了得到函?shù)的圖象,只需將的圖象上所有的點(diǎn)向左平移個單位.故選D【點(diǎn)睛】本題主要考查三角函數(shù)的平移,熟記左加右減的原則即可,屬于基礎(chǔ)題型.7、D【解析】因?yàn)閍s+t=as?at,lg(xy)=lgx+lgy(x,y為正實(shí)數(shù)),所以2lg(xy)=2lgx+lgy=2lgx?2lgy,滿足上述兩個公式,故選D.8、D【解析】

利用向量的數(shù)量積即可求解.【詳解】解析:.故選:D【點(diǎn)睛】本題考查了向量的數(shù)量積,注意向量夾角的定義,屬于基礎(chǔ)題.9、C【解析】

設(shè)雙曲線的方程為:,(a>0,b>0),依題意知當(dāng)點(diǎn)C在坐標(biāo)原點(diǎn)時,∠ACB最大,∠AOF1≥45°,利用tan∠AOF1,即可求得雙曲線離心率e的取值范圍.求出最小值.【詳解】設(shè)雙曲線的方程為:,(a>0,b>0),∵雙曲線關(guān)于x軸對稱,且直線AB⊥x軸,設(shè)左焦點(diǎn)F1(﹣c,0),則A(﹣c,),B(﹣c,),∵△ABC為直角三角形,依題意知,當(dāng)點(diǎn)C在坐標(biāo)原點(diǎn)時,∠ACB最大,∴∠AOF1≥45°,∴tan∠AOF11,整理得:()21≥0,即e2﹣e﹣1≥0,解得:e.即雙曲線離心率e的最小值為:.故選:C【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì),分析得到當(dāng)點(diǎn)C在坐標(biāo)原點(diǎn)時,∠ACB最大是關(guān)鍵,得到∠AOF1≥45°是突破口,屬于中檔題.10、A【解析】試題分析:當(dāng)滿足l?α,l⊥β時可得到α⊥β成立,反之,當(dāng)l?α,α⊥β時,l與β可能相交,可能平行,因此前者是后者的充分不必要條件考點(diǎn):充分條件與必要條件點(diǎn)評:命題:若p則q是真命題,則p是q的充分條件,q是p的必要條件二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

表示出扇形的面積,利用二次函數(shù)的單調(diào)性即可得出.【詳解】設(shè)扇形的半徑為,圓心角為,則弧長,,即,該扇形的面積,當(dāng)且僅當(dāng)時取等號.該扇形的面積的最大值為.故答案:.【點(diǎn)睛】本題考查了弧長公式與扇形的面積計算公式、二次函數(shù)的單調(diào)性,考查了計算能力,屬于基礎(chǔ)題.12、1【解析】

直接利用數(shù)列的通項公式,建立不等式,解不等式求出結(jié)果.【詳解】解:數(shù)列的通項公式,則:,所以:當(dāng)時,即:,當(dāng)時,成立,即:的最小值為1.故答案為:1【點(diǎn)睛】本題考查的知識要點(diǎn):數(shù)列的通項公式的求法及應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.13、【解析】

利用商數(shù)關(guān)系式化簡即可.【詳解】,故填.【點(diǎn)睛】利用同角的三角函數(shù)的基本關(guān)系式可以化簡一些代數(shù)式,常見的方法有:(1)弦切互化法:即把含有正弦和余弦的代數(shù)式化成關(guān)于正切的代數(shù)式,也可以把含有正切的代數(shù)式化為關(guān)于余弦和正弦的代數(shù)式;(2)“1”的代換法:有時可以把看成.14、【解析】

根據(jù)三角函數(shù)的誘導(dǎo)公式,準(zhǔn)確運(yùn)算,即可求解.【詳解】由題意,可得.故答案為:.【點(diǎn)睛】本題主要考查了三角函數(shù)的誘導(dǎo)公式的化簡、求值問題,其中解答中熟記三角函數(shù)的誘導(dǎo)公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.15、2【解析】

由截得圓臺上,下底面積之比可得上,下底面半徑之比,再根據(jù)小圓錐的母線即可得圓臺母線.【詳解】設(shè)截得的圓臺的母線長為.因?yàn)榻氐玫膱A臺的上、下底面面積之比是1:4,所以截得的圓臺的上、下底面半徑之比是1:2.因?yàn)榻厝サ男A錐母線長為2,所以,解得.【點(diǎn)睛】本題考查求圓臺的母線,屬于基礎(chǔ)題.16、【解析】

由三角形的面積公式得出,設(shè),由可得出,利用基本不等式可求出的值,利用等號成立可得出、的值,再利用余弦利用可得出的值.【詳解】由題意可得,解得,設(shè),則,可得,由基本不等式可得,當(dāng)且僅當(dāng)時,取得最大值,,,由余弦定理得,解得.故答案為.【點(diǎn)睛】本題考查余弦定理解三角形,同時也考查了三角形的面積公式以及利用基本不等式求最值,在利用基本不等式求最值時,需要結(jié)合已知條件得出定值條件,同時要注意等號成立的條件,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】

(1)等差數(shù)列{an}的公差設(shè)為d,運(yùn)用等差數(shù)列的通項公式,解方程可得首項和公差,進(jìn)而得到所求通項公式;(2)運(yùn)用等差數(shù)列的求和公式,求得(),再由數(shù)列的裂項相消求和可得Tn,再由不等式的性質(zhì)即可得證.【詳解】(1)等差數(shù)列{an}的公差設(shè)為d,2a9=a12+13,a3=7,可得2(a1+8d)=a1+11d+13,a1+2d=7,解得a1=3,d=2,則an=3+2(n﹣1)=2n+1;(2)Snn(3+2n+1)=n(n+2),(),前n項和Tn(1)(1)().【點(diǎn)睛】本題考查等差數(shù)列的通項公式和求和公式的運(yùn)用,以及數(shù)列的裂項相消求和,考查方程思想和運(yùn)算能力,屬于中檔題.18、(1)(2)證明見解析;(3)或【解析】

(1)利用橢圓的定義可知曲線為的橢圓,直接寫出橢圓的方程.(2)設(shè)直線,設(shè),聯(lián)立直線方程與橢圓方程,通過韋達(dá)定理求解KOM,然后推出直線OM的斜率與的斜率的乘積為定值.(3)設(shè)直線方程是與橢圓方程聯(lián)立,根據(jù)面積公式,代入根與系數(shù)的關(guān)系,利用換元和基本不等式求最值.【詳解】(1)由題意知曲線是以原點(diǎn)為中心,長軸在軸上的橢圓,設(shè)其標(biāo)準(zhǔn)方程為,則有,所以,∴.(2)證明:設(shè)直線的方程為,設(shè)則由可得,即∴,∴,,,∴直線的斜率與的斜率的乘積=為定值(3)點(diǎn),由可得,,解得∴設(shè)當(dāng)時,取得最大值.此時,即所以直線方程是【點(diǎn)睛】本題考查橢圓定義及方程、韋達(dá)定理的應(yīng)用及三角形面積的范圍等問題,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,函數(shù)與方程思想,是中檔題.19、(Ⅰ);(Ⅱ)-2?!窘馕觥吭囶}分析:(Ⅰ)5分(Ⅱ)10分考點(diǎn):三角函數(shù)化簡求值點(diǎn)評:三角函數(shù)化簡主要考察的是誘導(dǎo)公式,如等,本題難度不大,需要學(xué)生熟記公式20、(1)見解析;(2)①;②3.385萬元.【解析】

(1)由已知條件利用公式,求得的值,再與比較大小即可得結(jié)果;(2)根據(jù)所給的數(shù)據(jù),做出變量的平均數(shù),根據(jù)樣本中心點(diǎn)一定在線性回歸方程上,求出的值,寫出線性回歸方程;將代入所求線性回歸方程求出對應(yīng)的的值即可.【詳解】(1)由已知條件得:,這說明與正相關(guān),且相關(guān)性很強(qiáng).(2)①由已知求得,所以所求回歸直線方程為.②當(dāng)時,(萬元),此時產(chǎn)品的總成本為3.385萬元.【點(diǎn)睛】本題主要考查線性回歸方程的求解與應(yīng)用,屬于中檔題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論