




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省榆社中學(xué)2025屆高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)是等比數(shù)列,有下列四個命題:①是等比數(shù)列;②是等比數(shù)列;③是等比數(shù)列;④是等差數(shù)列.其中正確命題的個數(shù)是()A. B. C. D.2.集合,,則()A. B.C. D.3.在中,,,,,則()A.或 B. C. D.4.已知下列各命題:①兩兩相交且不共點的三條直線確定一個平面:②若真線不平行于平面,則直線與平面有公共點:③若兩個平面垂直,則一個平面內(nèi)的已知直線必垂直于另一個平面的無數(shù)條直線:④若兩個二面角的兩個面分別對應(yīng)垂直,則這兩個二面角相等或互補.則其中正確的命題共有()個A. B. C. D.5.如圖,為正三角形,,,則多面體的正視圖(也稱主視圖)是A. B. C. D.6.下列命題中正確的是()A.第一象限角必是銳角; B.相等的角終邊必相同;C.終邊相同的角相等; D.不相等的角其終邊必不相同.7.已知某地區(qū)中小學(xué)生人數(shù)和近視情況分別如圖1和圖2所示,為了了解該地區(qū)中小學(xué)生的近視形成原因,按學(xué)段用分層抽樣的方法抽取該地區(qū)的學(xué)生進行調(diào)查,則樣本容量和抽取的初中生中近視人數(shù)分別為()A., B., C., D.,8.已知函數(shù),若存在,且,使成立,則以下對實數(shù)的推述正確的是()A. B. C. D.9.已知α、β為銳角,cosα=,tan(α?β)=?,則tanβ=()A. B.3 C. D.10.若,,則的最小值為()A.2 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,的夾角為,若,,則________.12.已知,,若,則實數(shù)_______.13.設(shè)數(shù)列的前n項和為,關(guān)于數(shù)列,有下列三個命題:(1)若既是等差數(shù)列又是等比數(shù)列,則;(2)若,則是等差數(shù)列:(3)若,則是等比數(shù)列這些命題中,真命題的序號是__________________________.14.在△ABC中,,則________.15.函數(shù)的定義域為___________.16.設(shè)公差不為零的等差數(shù)列的前項和為,若,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)向量、滿足,,.(1)求的值;(2)若,求實數(shù)的值.18.已知數(shù)列滿足:.(1)求證:數(shù)列為等差數(shù)列,并求;(2)記,求數(shù)列的前項和.19.已知,函數(shù).(1)當(dāng)時,解不等式;(2)若對,不等式恒成立,求a的取值范圍.20.已知數(shù)列滿足若數(shù)列滿足:(1)求數(shù)列的通項公式;(2)求證:是等差數(shù)列.21.設(shè)數(shù)列的前項和為,已知.(1)求,的值;(2)求證:數(shù)列是等比數(shù)列.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
設(shè),得到,,,再利用舉反例的方式排除③【詳解】設(shè),則:,故是首項為,公比為的等比數(shù)列,①正確,故是首項為,公比為的等比數(shù)列,②正確取,則,不是等比數(shù)列,③錯誤.,故是首項為,公差為的等差數(shù)列,④正確故選:C【點睛】本題考查了等差數(shù)列,等比數(shù)列的判斷,找出反例可以快速的排除選項,簡化運算,是解題的關(guān)鍵.2、B【解析】
求出中不等式的解集確定出,找出與的交集即可.【詳解】解:由中不等式變形得:,解得:,即,,,故選:.【點睛】本題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵,屬于基礎(chǔ)題.3、C【解析】
由三角形面積公式可得,進而可得解.【詳解】在中,,,,,可得,所以,所以【點睛】本題主要考查了三角形的面積公式,屬于基礎(chǔ)題.4、B【解析】
①利用平面的基本性質(zhì)判斷.②利用直線與平面的位置關(guān)系判斷.③由面面垂直的性質(zhì)定理判斷.④通過舉反例來判斷.【詳解】①兩兩相交且不共點,形成三個不共線的點,確定一個平面,故正確.②若真線不平行于平面,則直線與平面相交或在平面內(nèi),所以有公共點,故正確.③若兩個平面垂直,則一個平面內(nèi),若垂直交線的直線則垂直另一個平面,垂直另一平面內(nèi)所有直線,若不垂直與交線,也與另一平面內(nèi)垂直交線的直線及其平行線垂直,也有無數(shù)條,故正確.④若兩個二面角的兩個面分別對應(yīng)垂直,則這兩個二面角關(guān)系不確定,如圖:在正方體ABCD-A1B1C1D1中,二面角D-AA1-F與二面角D1-DC-A的兩個半平面就是分別對應(yīng)垂直的,但是這兩個二面角既不相等,也不互補.故錯誤..故選:B【點睛】本題主要考查了點、線、面的位置關(guān)系,還考查了推理論證和理解辨析的能力,屬于基礎(chǔ)題.5、D【解析】
為三角形,,平面,
且,則多面體的正視圖中,
必為虛線,排除B,C,
說明右側(cè)高于左側(cè),排除A.,故選D.6、B【解析】
根據(jù)終邊相同的角和象限角的定義,舉反例或直接進行判斷可得最后結(jié)果.【詳解】是第一象限角,但不是銳角,故A錯誤;與終邊相同,但他們不相等,故C錯誤;與不相等,但他們的終邊相同,故D錯誤;因為角的始邊在x軸的非負半軸上,則相等的角終邊必相同,故B正確.故選:B【點睛】本題考查了終邊相同的角和象限角的定義,利用定義舉出反例進行判斷是解決本題的關(guān)鍵.7、A【解析】
根據(jù)分層抽樣的定義建立比例關(guān)系即可得到結(jié)論?!驹斀狻坑蓤D1得樣本容量為,抽取的初中生人數(shù)為人,則初中生近視人數(shù)為人,故選.【點睛】本題主要考查分層抽樣的應(yīng)用。8、A【解析】
先根據(jù)的圖象性質(zhì),推得函數(shù)的單調(diào)區(qū)間,再依據(jù)條件分析求解.【詳解】解:是把的圖象中軸下方的部分對稱到軸上方,函數(shù)在上遞減;在上遞增.函數(shù)的圖象可由的圖象向右平移1個單位而得,在,上遞減,在,上遞增,若存在,,,,使成立,故選:.【點睛】本題考查單調(diào)函數(shù)的性質(zhì)、反正切函數(shù)的圖象性質(zhì)及函數(shù)的圖象的平移.圖象可由的圖象向左、向右平移個單位得到,屬于基礎(chǔ)題.9、B【解析】
利用角的關(guān)系,再利用兩角差的正切公式即可求出的值.【詳解】因為,且為銳角,則,所以,因為,所以故選B.【點睛】主要考查了兩角差的正切公式,同角三角函數(shù)的平方關(guān)系,屬于中檔題.對于給值求值問題,關(guān)鍵是尋找已知角(條件中的角)與未知角(問題中的角)的關(guān)系,用已知角表示未知角,從而將問題轉(zhuǎn)化為求已知角的三角函數(shù)值,再利用兩角和與差的三角函數(shù)公式、二倍角公式以及誘導(dǎo)公式即可求出.10、D【解析】
根據(jù)所給等量關(guān)系,用表示出可得.代入中,構(gòu)造基本不等式即可求得的最小值.【詳解】因為,所以變形可得所以由基本不等式可得當(dāng)且僅當(dāng)時取等號,解得所以的最小值為故選:D【點睛】本題考查了基本不等式求最值的應(yīng)用,注意構(gòu)造合適的基本不等式形式,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由,展開后進行計算,得到的值,從而得到答案.【詳解】因為向量,的夾角為,若,,所以,所以.故答案為:.【點睛】本題考查求向量的模長,向量的數(shù)量積運算,屬于簡單題.12、【解析】
利用平面向量垂直的數(shù)量積關(guān)系可得,再利用數(shù)量積的坐標(biāo)運算可得:,解方程即可.【詳解】因為,所以,整理得:,解得:【點睛】本題主要考查了平面向量垂直的坐標(biāo)關(guān)系及方程思想,屬于基礎(chǔ)題.13、(1)、(2)、(3)【解析】
利用等差數(shù)列和等比數(shù)列的定義,以及等差數(shù)列和等比數(shù)列的前項和形式,逐一判斷即可.【詳解】既是等差數(shù)列又是等比數(shù)列的數(shù)列是非零常數(shù)列,故(1)正確.等差數(shù)列的前項和是二次函數(shù)形式,且不含常數(shù),故(2)正確.等比數(shù)列的前項和是常數(shù)加上常數(shù)乘以的形式,故(3)正確.故答案為:(1),(2),(3)【點睛】本題主要考查等差數(shù)列和等比數(shù)列的定義,同時考查了等差數(shù)列和等比數(shù)列的前項和,屬于簡單題.14、【解析】
因為所以注意到:故.故答案為:15、【解析】試題分析:由題設(shè)可得,解之得,故應(yīng)填答案.考點:函數(shù)定義域的求法及運用.16、【解析】
設(shè)出數(shù)列的首項和公差,根據(jù)等差數(shù)列通項公式和前項和公式,代入條件化簡得和的關(guān)系,再代入所求的式子進行化簡求值.【詳解】解:設(shè)等差數(shù)列的首項為,公差為,由,得,得,.故答案為:【點睛】本題考查了等差數(shù)列通項公式和前n項和公式的簡單應(yīng)用,屬于基礎(chǔ).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)將等式兩邊平方,利用平面向量數(shù)量積的運算律可計算出的值;(2)由轉(zhuǎn)化為,然后利用平面向量數(shù)量積的運算律可求出實數(shù)的值.【詳解】(1)在等式兩邊平方得,即,即,解得;(2),,即,解得.【點睛】本題考查利用平面向量的模求數(shù)量積,同時也考查了利用平面向量數(shù)量積來處理平面向量垂直的問題,考查化歸與轉(zhuǎn)化數(shù)學(xué)思想,屬于基礎(chǔ)題.18、(1)證明見解析,;(2).【解析】
(1)由等差數(shù)列的定義證明,利用等差數(shù)列通項公式可求得;(2)用裂項相消法求數(shù)列的和.【詳解】(1)證明:∵,∴,即,∴是等差數(shù)列,公差為,,∴,∴;(2)由(1),所以.【點睛】本題考查用定義證明等差數(shù)列,考查等差數(shù)列的通項公式,考查用裂項相消法求數(shù)列的前項和.掌握等差數(shù)的定義是解題關(guān)鍵.?dāng)?shù)列求和時除掌握等比數(shù)列的求和公式外還要掌握數(shù)列的幾種求和方法:裂項相消法,錯位相減法,分組(并項)求和法,倒序相加法等等.19、(1)或;(2)或.【解析】
(1)代入,把項都移到左邊,合并同類項再因式分解,即可得到本題答案;(2)等價于,考慮的圖象不在圖象的上方,利用數(shù)形結(jié)合的方法,即可得到本題答案.【詳解】(1)當(dāng)時,由得,即,解得,或,所以,所求不等式的解集為或;(2)等價于,所以當(dāng)時,的圖象在圖象的下方,所以或所以,,或.【點睛】本題主要考查一元二次不等式以及利用數(shù)形結(jié)合的方法解決不等式的恒成立問題.20、(1)(1)證明見解析【解析】
數(shù)列滿足,變形為,利用等比數(shù)列的通項公式即可得出數(shù)列滿足:,時,,可得,化為:,可得:,相減化簡即可證明.【詳解】(1)數(shù)列滿足,,數(shù)列是等比數(shù)列,首項為1,公比為1.,.證明:數(shù)列滿足:,時,,解得.時,,可得,化為:,可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年調(diào)酒師實踐技能題型及試題及答案
- 2025建筑工程施工合同風(fēng)險識別與應(yīng)對策略研究
- 四川省南充市順慶區(qū)南充高級中學(xué)2024-2025學(xué)年高一下學(xué)期4月月考語文試題
- 2025企業(yè)簡化的租賃合同范本
- 2025室內(nèi)裝修施工合同
- 2025年關(guān)于以設(shè)備為租賃物的融資租賃合同效力分析
- 法治助力鄉(xiāng)村振興的路徑與實踐
- 2025年農(nóng)產(chǎn)品貿(mào)易合作合同協(xié)議
- 開封文化藝術(shù)職業(yè)學(xué)院《大數(shù)據(jù)分析與處理》2023-2024學(xué)年第二學(xué)期期末試卷
- 呂梁職業(yè)技術(shù)學(xué)院有機化學(xué)上2023-2024學(xué)年第二學(xué)期期末試卷
- 奶制品風(fēng)味物質(zhì)合成與改良技術(shù)
- 2024年6月四川省高中學(xué)業(yè)水平考試生物試卷真題(含答案詳解)
- 2023-2024學(xué)年遼寧省沈陽市南昌中學(xué)八年級(下)月考英語試卷(4月份)
- 國服中山裝的設(shè)計特點及含義
- TB10001-2016 鐵路路基設(shè)計規(guī)范
- 19S406建筑排水管道安裝-塑料管道
- KA-T 20.1-2024 非煤礦山建設(shè)項目安全設(shè)施設(shè)計編寫提綱 第1部分:金屬非金屬地下礦山建設(shè)項目安全設(shè)施設(shè)計編寫提綱
- 綠色生活實踐
- (2024年)硫化氫安全培訓(xùn)課件
- 《聚焦超聲治療》課件
- 2023-2024學(xué)年高一下學(xué)期第一次月考(湘教版2019)地理試題(解析版)
評論
0/150
提交評論