2025屆上海市松江區(qū)市級名校高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第1頁
2025屆上海市松江區(qū)市級名校高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第2頁
2025屆上海市松江區(qū)市級名校高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第3頁
2025屆上海市松江區(qū)市級名校高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第4頁
2025屆上海市松江區(qū)市級名校高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆上海市松江區(qū)市級名校高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.己知弧長的弧所對的圓心角為弧度,則這條弧所在的圓的半徑為()A. B. C. D.2.在△ABC中,D是邊BC的中點,則=A. B. C. D.3.已知內(nèi)角,,所對的邊分別為,,且滿足,則=()A. B. C. D.4.?dāng)?shù)列的通項公式為,則數(shù)列的前100項和().A. B. C. D.5.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈:A.281盞 B.9盞 C.6盞 D.3盞6.已知函數(shù)的部分圖象如圖所示,則()A. B.C. D.7.一個球自高為米的地方自由下落,每次著地后回彈高度為原來的,到球停在地面上為止,球經(jīng)過的路程總和為()米A. B. C. D.8.連續(xù)擲兩次骰子,分別得到的點數(shù)作為點的坐標(biāo),則點落在圓內(nèi)的概率為A. B. C. D.9.在△ABC中,角A、B、C所對的邊分別為a、b、c,若acosA=bcosB,則△ABC的形狀為()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形10.已知數(shù)列的前項和為,令,記數(shù)列的前項為,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知常數(shù)θ∈(0,π2),若函數(shù)f(x)在Rf(x)=2sinπx-1≤x≤1log是________.12.若,則滿足的的取值范圍為______________;13.實數(shù)x、y滿足,則的最大值為________.14.關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:①y=f(x)的表達式可改寫為y=4cos(2x﹣);②y=f(x)是以2π為最小正周期的周期函數(shù);③y=f(x)的圖象關(guān)于點對稱;④y=f(x)的圖象關(guān)于直線x=﹣對稱.其中正確的命題的序號是.15.已知數(shù)列的前項和滿足,則______.16.已知一扇形的半徑為,弧長為,則該扇形的圓心角大小為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足=(1)若求數(shù)列的通項公式;(2)若==對一切恒成立求實數(shù)取值范圍.18.在一次人才招聘會上,有、兩家公司分別開出了他們的工資標(biāo)準(zhǔn):公司允諾第一個月工資為8000元,以后每年月工資比上一年月工資增加500元;公司允諾第一年月工資也為8000元,以后每年月工資在上一年的月工資基礎(chǔ)上遞增,設(shè)某人年初被、兩家公司同時錄取,試問:(1)若該人分別在公司或公司連續(xù)工作年,則他在第年的月工資分別是多少;(2)該人打算連續(xù)在一家公司工作10年,僅從工資收入總量較多作為應(yīng)聘的標(biāo)準(zhǔn)(不計其他因素),該人應(yīng)該選擇哪家公司,為什么?19.已知函數(shù)f1當(dāng)a>0時,求函數(shù)y=f2若存在m>0使關(guān)于x的方程fx=m+120.已知,,,求:的值.21.已知向量,,,.(1)求的最小值及相應(yīng)的t的值;(2)若與共線,求實數(shù)m.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

利用弧長公式列出方程直接求解,即可得到答案.【詳解】由題意,弧長的弧所對的圓心角為2弧度,則,解得,故選D.【點睛】本題主要考查了圓的半徑的求法,考查弧長公式等基礎(chǔ)知識,考查了推理能力與計算能力,是基礎(chǔ)題.2、C【解析】分析:利用平面向量的減法法則及共線向量的性質(zhì)求解即可.詳解:因為是的中點,所以,所以,故選C.點睛:本題主要考查共線向量的性質(zhì),平面向量的減法法則,屬于簡單題.3、A【解析】

利用正弦定理以及和與差的正弦公式可得答案;【詳解】∵0<A<π,∴sinA≠0由atanA=bcosC+ccosB,根據(jù)正弦定理:可得sinA?tanA=sinBcosC+sinCcosB=sin(B+C)=sinA∴?tanA=1;∴tanA,那么A;故選A.【點睛】本題考查三角形的正弦定理,,內(nèi)角和定理以及和與差正弦公式的運用,考查運算能力,屬于基礎(chǔ)題.4、C【解析】

根據(jù)通項公式,結(jié)合裂項求和法即可求得.【詳解】數(shù)列的通項公式為,則故選:C.【點睛】本題考查了裂項求和的應(yīng)用,屬于基礎(chǔ)題.5、D【解析】

設(shè)塔的頂層共有盞燈,得到數(shù)列的公比為2的等比數(shù)列,利用等比數(shù)列的前n項公式,即可求解.【詳解】設(shè)塔的頂層共有盞燈,則數(shù)列的公比為2的等比數(shù)列,所以,解得,即塔的頂層共有3盞燈,故選D.【點睛】本題主要考查了等比數(shù)列的通項公式與求和公式的應(yīng)用,著重考查了推理與計算能力,屬于基礎(chǔ)題.6、D【解析】

由函數(shù)的最值求出A,由周期求出,由五點法作圖求出的值,從而得出結(jié)論.【詳解】根據(jù)函數(shù)的圖象求出函數(shù)的周期,然后可以求出,通過函數(shù)經(jīng)過的最大值點求出值,即可得到函數(shù)的解析式.由函數(shù)的圖象可知:,

.

當(dāng),函數(shù)取得最大值1,所以,

故選D.7、D【解析】

設(shè)球第次到第次著地這一過程中球經(jīng)過的路程為米,可知數(shù)列是以為首項,以為公比的等比數(shù)列,由此可得出球經(jīng)過的路程總和為米.【詳解】設(shè)球第次到第次著地這一過程中球經(jīng)過的路程為米,則,由題意可知,數(shù)列是以為首項,以為公比的等比數(shù)列,因此,球經(jīng)過的路程總和米.故選:D.【點睛】本題考查等比數(shù)列的實際應(yīng)用,涉及到無窮等比數(shù)列求和問題,考查計算能力,屬于中等題.8、B【解析】

由拋擲兩枚骰子得到點的坐標(biāo)共有36種,再利用列舉法求得點落在圓內(nèi)所包含的基本事件的個數(shù),利用古典概型的概率計算公式,即可求解.【詳解】由題意知,試驗發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點數(shù)作為點P的坐標(biāo),共有種結(jié)果,而滿足條件的事件是點P落在圓內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結(jié)果,根據(jù)古典概型概率公式,可得,故選B.【點睛】本題主要考查的是古典概型及其概率計算公式.,屬于基礎(chǔ)題.解題時要準(zhǔn)確理解題意,先要判斷該概率模型是不是古典概型,正確找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù),令古典概型及其概率的計算公式求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.9、C【解析】

利用正弦定理由acosA=bcosB,可得sinAcosA=sinBcosB,再利用二倍角的正弦即可判斷△ABC的形狀.【詳解】在△ABC中,∵acosA=bcosB,∴由正弦定理得:sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形狀為等腰三角形或直角三角形.故選C.考點:三角形的形狀判斷.10、B【解析】

由數(shù)列的前項和求通項,再由數(shù)列的周期性及等比數(shù)列的前項和求解.【詳解】因為,當(dāng)時,得;當(dāng),且時,,不滿足上式,∴,所以,當(dāng)時,;當(dāng)是偶數(shù)時,為整數(shù),則,所以;故對于任意正整數(shù),均有:因為,所以.因為為偶數(shù),所以,而,所以.故選:B.【點睛】本題考查數(shù)列的函數(shù)概念與表示、余弦函數(shù)的性質(zhì)、正弦函數(shù)的誘導(dǎo)公式以及數(shù)列求和,解題的關(guān)鍵是當(dāng)時,,和的推導(dǎo),本題屬于難題.二、填空題:本大題共6小題,每小題5分,共30分。11、15【解析】

根據(jù)f(-1【詳解】∵函數(shù)f(x)在R上恒有f(-1∴f-∴函數(shù)周期為4.∵常數(shù)θ∈(0,π∴cos∴函數(shù)y=f(x)-cosθ-1在區(qū)間[-5,14]上零點,即函數(shù)y=f(x)?(x∈[-5,14])與直線由f(x)=2sinπx由圖可知,在一個周期內(nèi),函數(shù)y=f(x)-cos故函數(shù)y=f(x)-cosθ-1在區(qū)間故填15.【點睛】本題主要考查了函數(shù)零點的個數(shù)判斷,涉及數(shù)形結(jié)合思想在解題中的運用,屬于難題.12、【解析】

本題首先可確定在區(qū)間上所對應(yīng)的的值,然后可結(jié)合正弦函數(shù)圖像得出不等式的解集.【詳解】當(dāng)時,令,解得或,如圖,繪出正弦函數(shù)圖像,結(jié)合函數(shù)圖像可知,當(dāng)時,的解集為【點睛】本題考查三角函數(shù)不等式的解法,考查對正弦函數(shù)性質(zhì)的理解,考查計算能力,體現(xiàn)了基礎(chǔ)性,是簡單題.13、【解析】

根據(jù)約束條件,畫出可行域,將目標(biāo)函數(shù)化為斜截式,找到其在軸截距的最大值,得到答案.【詳解】由約束條件,畫出可行域,如圖所示,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過點時,直線在軸上的截距最大,聯(lián)立,解得,即,所以.故答案為:.【點睛】本題考查線性規(guī)劃求最大值,屬于簡單題.14、①③【解析】

∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正確;∵T=,故②不正確;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的圖象關(guān)于點對稱,③正確④不正確;故答案為①③.15、5【解析】

利用求得,進而求得的值.【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時上式也滿足,故的通項公式為,故.【點睛】本小題主要考查已知求,考查運算求解能力,屬于基礎(chǔ)題.16、【解析】

利用扇形的弧長除以半徑可得出該扇形圓心角的弧度數(shù).【詳解】由扇形的弧長、半徑以及圓心角之間的關(guān)系可知,該扇形的圓心角大小為.故答案為:.【點睛】本題考查扇形圓心角的計算,解題時要熟悉扇形的弧長、半徑以及圓心角之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)=;(2).【解析】

(1)由,結(jié)合可得數(shù)列為等差數(shù)列,進而可得所求;(2)由得,利用累加法并結(jié)合等比數(shù)列的前項和公式求出,化簡得,再利用數(shù)列的單調(diào)性求出的最大值即可得出結(jié)論.【詳解】(1)由,可得=.∴數(shù)列是首項為1,公差為4的等差數(shù)列,∴.(2)由及,得=,∴,∴,又滿足上式,∴.∵對一切恒成立,即對一切恒成立,∴對一切恒成立.又?jǐn)?shù)列為單調(diào)遞減數(shù)列,∴,∴,∴實數(shù)取值范圍為.【點睛】本題主要考查等差數(shù)列與等比數(shù)列的通項公式與前項和公式,考查了累加法與恒成立問題、邏輯推理能力與計算能力,解決數(shù)列中的恒成立問題時,也常利用分離參數(shù)的方法,轉(zhuǎn)化為求最值的問題求解.18、(1)公司:;公司:;(2)公司十年月工資總和為,公司十年月工資總和為,選公司;【解析】

(1)易得在兩家公司每年的工資分別成等差和等比數(shù)列再求解即可.(2)根據(jù)(1)中的通項公式求解前10年的工資和比較大小即可.【詳解】(1)易得在公司的工資成公差為500,首項為8000的等差數(shù)列,故在公司第年的月工資為.在公司的工資成公比為,首項為8000的等比數(shù)列.故在公司第年的月工資為.(2)由(1)得,在公司十年月工資總和在公司十年月工資總和.因為.故選公司.【點睛】本題主要考查了等差等比數(shù)列的實際應(yīng)用題,需要根據(jù)題意找出首項公比公差再求和等.屬于基礎(chǔ)題型.19、(1)見解析;(2)a<-3-2【解析】

(1)將問題轉(zhuǎn)化為解不等式ax2-a+1x+1≥0,即ax-1x-1≥0(2)t=m+1m≥2,將問題轉(zhuǎn)化為:關(guān)于x的方程ax2【詳解】(1)由題意,fx=ax解方程ax-1x-1=0,得x1①當(dāng)1a>1時,即當(dāng)0<a<1時,解不等式ax-1x-1≥0,得此時,函數(shù)y=fx的定義域為②當(dāng)1a=1時,即當(dāng)a=1時,解不等式x-12此時,函數(shù)y=fx的定義域為③當(dāng)1a<1時,即當(dāng)a>1時,解不等式ax-1x-1≥0,解得此時,函數(shù)y=fx的定義域為(2)令t=m+1則關(guān)于x的方程fx=t有四個不同的實根可化為即ax2-解得a<-3-2【點睛】本題考查含參不等式的求解,考查函數(shù)的零點個數(shù)問題,在求解含參不等式時,找出分類討論的基本依據(jù),在求解二次函數(shù)的零點問題時,應(yīng)結(jié)合圖形找出等價條件,通過列不等式組來求解,考查分類討論數(shù)學(xué)思想以及轉(zhuǎn)化與化歸數(shù)學(xué)思想,屬于中等題。20、【解析】

求出和的取值范圍,利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論