版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省贛州市會昌中學(xué)、寧師中學(xué)2025屆高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某校高一年級有男生540人,女生360人,用分層抽樣的方法從高一年級的學(xué)生中隨機(jī)抽取25名學(xué)生進(jìn)行問卷調(diào)查,則應(yīng)抽取的女生人數(shù)為A.5 B.10 C.4 D.202.函數(shù)(其中)的圖象如圖所示,為了得到的圖象,只需把的圖象上所有的點()A.向右平移個單位長度 B.向左平移個單位長度C.向右平移個單位長度 D.向左平移個單位長度3.若平面和直線,滿足,,則與的位置關(guān)系一定是()A.相交 B.平行 C.異面 D.相交或異面4.正四棱錐的頂點都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的表面積為()A. B. C. D.5.若平面向量,滿足,,且,則等于()A. B. C.2 D.86.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A.10 B.20 C.30 D.607.設(shè)是等差數(shù)列的前項和,若,則A. B. C. D.8.若、、為實數(shù),則下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則9.已知點,點是圓上任意一點,則面積的最大值是()A. B. C. D.10.空間直角坐標(biāo)系中,點關(guān)于軸對稱的點的坐標(biāo)是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列中,若,,則______;12.已知無窮等比數(shù)列的前項和,其中為常數(shù),則________13.已知cosθ,θ∈(π,2π),則sinθ=_____,tan_____.14.如圖,半徑為的扇形的圓心角為,點在上,且,若,則__________.15.設(shè)ω為正實數(shù).若存在a、b(π≤a<b≤2π),使得16.在邊長為2的正△ABC所在平面內(nèi),以A為圓心,為半徑畫弧,分別交AB,AC于D,E.若在△ABC內(nèi)任丟一粒豆子,則豆子落在扇形ADE內(nèi)的概率是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,平面,底面是菱形,連,交于點.(Ⅰ)若點是側(cè)棱的中點,連,求證:平面;(Ⅱ)求證:平面平面.18.在中,角,,所對的邊分別為,,,.(1)求角的大?。唬?)若,的面積為,求及的值.19.(1)計算(2)已知,求的值20.在中,內(nèi)角所對的邊分別是.已知,,且.(Ⅰ)求角的大?。唬á颍┤?,求面積的最大值.21.已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列;(2)求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
直接利用分層抽樣按照比例抽取得到答案.【詳解】設(shè)應(yīng)抽取的女生人數(shù)為,則,解得.故答案選B【點睛】本題考查了分層抽樣,屬于簡單題.2、D【解析】
由圖象求得函數(shù)解析式的參數(shù),再利用誘導(dǎo)公式將異名函數(shù)化為同名函數(shù)根據(jù)圖象間平移方法求解.【詳解】由圖象可知,又,所以,又因為,所以,所以,又因為,又,所以所以又因為故選D.【點睛】本題考查由圖象確定函數(shù)的解析式和正弦函數(shù)和余弦函數(shù)圖象之間的平移,關(guān)鍵在于將異名函數(shù)化為同名函數(shù),屬于中檔題.3、D【解析】
當(dāng)時與相交,當(dāng)時與異面.【詳解】當(dāng)時與相交,當(dāng)時與異面.故答案為D【點睛】本題考查了直線的位置關(guān)系,屬于基礎(chǔ)題型.4、A【解析】
正四棱錐P-ABCD的外接球的球心在它的高上,記為O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面積,故選A.考點:球的體積和表面積5、B【解析】
由,可得,再結(jié)合,展開可求出答案.【詳解】由,可知,展開可得,所以,又,,所以.故選:B.【點睛】本題考查向量數(shù)量積的應(yīng)用,考查學(xué)生的計算求解能力,注意向量的平方等于模的平方,屬于基礎(chǔ)題.6、B【解析】
由三視圖可知幾何體為四棱錐,利用四棱錐體積公式可求得結(jié)果.【詳解】由三視圖可知,該幾何體為底面為長為,寬為的長方形,高為的四棱錐四棱錐體積本題正確選項:【點睛】本題考查根據(jù)三視圖求解幾何體體積的問題,關(guān)鍵是能夠通過三視圖將幾何體還原為四棱錐,從而利用棱錐體積公式來進(jìn)行求解.7、A【解析】,,選A.8、B【解析】
利用等式的性質(zhì)或特殊值法來判斷各選項中不等式的正誤.【詳解】對于A選項,若,則,故A不成立;對于B選項,,在不等式同時乘以,得,另一方面在不等式兩邊同時乘以,得,,故B成立;對于選項C,在兩邊同時除以,可得,所以C不成立;對于選項D,令,,則有,,,所以D不成立.故選B.【點睛】本題考查不等式正誤的判斷,常用的判斷方法有:不等式的基本性質(zhì)、特殊值法以及比較法,在實際操作中,可結(jié)合不等式結(jié)構(gòu)合理選擇相應(yīng)的方法進(jìn)行判斷,考查推理能力,屬于基礎(chǔ)題.9、B【解析】
求出直線的方程,計算出圓心到直線的距離,可知的最大高度為,并計算出,最后利用三角形的面積公式可得出結(jié)果.【詳解】直線的方程,且,圓的圓心坐標(biāo)為,半徑長為,圓心到直線的距離為,所以,點到直線的距離的最大值為,因此,面積的最大值為,故選B.【點睛】本題考查三角形面積的最值問題,考查圓的幾何性質(zhì),當(dāng)直線與圓相離時,若圓的半徑為,圓心到直線的距離為,則圓上一點到直線距離的最大值為,距離的最小值為,要熟悉相關(guān)結(jié)論的應(yīng)用.10、A【解析】
關(guān)于軸對稱,縱坐標(biāo)不變,橫坐標(biāo)、豎坐標(biāo)變?yōu)橄喾磾?shù).【詳解】關(guān)于軸對稱的兩點的縱坐標(biāo)相同,橫坐標(biāo)、豎坐標(biāo)均互為相反數(shù).所以點關(guān)于軸對稱的點的坐標(biāo)是.故選:A.【點睛】本題考查空間平面直角坐標(biāo)系,考查關(guān)于坐標(biāo)軸、坐標(biāo)平面對稱的問題.屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先分組求和得,再根據(jù)極限定義得結(jié)果.【詳解】因為,,……,,所以則.【點睛】本題考查分組求和法、等比數(shù)列求和、以及數(shù)列極限,考查基本求解能力.12、1【解析】
根據(jù)等比數(shù)列的前項和公式,求得,再結(jié)合極限的運算,即可求解.【詳解】由題意,等比數(shù)列前項和公式,可得,又由,所以,所以,可得.故答案為:.【點睛】本題主要考查了等比數(shù)列的前項和公式的應(yīng)用,以及熟練的極限的計算,其中解答中根據(jù)等比數(shù)列的前項和公式,求得的值,結(jié)合極限的運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、﹣2.【解析】
由題意利用同角三角函數(shù)的基本關(guān)系,二倍角公式,求得式子的值.【詳解】由,,知,則,.故答案為:,.【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.14、【解析】根據(jù)題意,可得OA⊥OC,以O(shè)為坐標(biāo)為坐標(biāo)原點,OC,OA所在直線分別為x軸、y軸建立平面直角坐標(biāo)系,如圖所示:則有C(1,0),A(0,1),B(cos30°,-sin30°),即.于是.由,得:,則:,解得.∴.點睛:(1)應(yīng)用平面向量基本定理表示向量的實質(zhì)是利用平行四邊形法則或三角形法則進(jìn)行向量的加、減或數(shù)乘運算.(2)用向量基本定理解決問題的一般思路是:先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運算來解決.15、ω∈[【解析】
由sinωa+sinωb=2?sinωa=sinωb=1.而[ωa,ωb]?[ωπ,2ωπ]【詳解】由sinωa+而[ωa,ωb]?[ωπ,2ωπ],故已知條件等價于:存在整數(shù)ωπ當(dāng)ω≥4時,區(qū)間[ωπ,2ωπ]的長度不小于4π當(dāng)0<ω<4時,注意到,[ωπ故只要考慮如下幾種情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9綜上,并注意到ω≥4也滿足條件,知ω∈[9故答案為:ω∈[【點睛】本題主要考查三角函數(shù)的圖像和性質(zhì),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.16、【解析】
由三角形ABC的邊長為2不難求出三角形ABC的面積,又由扇形的半徑為,也可以求出扇形的面積,代入幾何概型的計算公式即可求出答案.【詳解】由題意知,在△ABC中,BC邊上的高AO正好為,∴圓與邊CB相切,如圖.S扇形=×××=,S△ABC=×2×2×=,∴P==.【點睛】本題考查面積型幾何概型概率的求法,屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見證明;(Ⅱ)見證明【解析】
(Ⅰ)由為菱形,得為中點,進(jìn)而得到,利用線面平行的判定定理,即可求解;(Ⅱ)先利用線面垂直的判定定理,證得平面,進(jìn)而利用面面垂直的判定定理,即可證得平面平面.【詳解】(Ⅰ)證明:因為為菱形,所以為中點,又為中點,所以,,平面,平面,所以,平面;(Ⅱ)因為平面,所以,因為為菱形,所以,,所以,平面,平面,所以,平面平面.【點睛】本題考查了線面位置關(guān)系的判定與證明,熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.18、(1)(2),【解析】
(1)化簡等式,即可求出角.(2)利用角C的余弦公式,求出c與a的關(guān)系式,再由正弦定理求出角A的正弦值,再結(jié)合面積公式求出c的值.【詳解】(1)∵,∴,即,∴.又,∴.(2)∵,∴,即,∴.∵,且,∴,∴,由正弦定理得,解得.【點睛】本題考查利用解三角形,屬于基礎(chǔ)題.19、(1)1+;(2).【解析】
(1)利用對數(shù)的運算法則計算得解;(2)先化簡已知得,再把它代入化簡的式子即得解.【詳解】(1)原式=1+;(2)由題得,所以.【點睛】本題主要考查對數(shù)的運算,考查誘導(dǎo)公式化簡求值和同角的三角函數(shù)關(guān)系,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)先利用向量垂直的坐標(biāo)表示,得到,再利用正弦定理以及兩角和的正弦公式將,化為,進(jìn)而得到,由此能求出.(Ⅱ)將兩邊平方,推導(dǎo)出,當(dāng)且僅當(dāng),時取等號,由此求出面積的最大值.【詳解】解析:(Ⅰ)由得,則得,即由于,得,又A為內(nèi)角,因此.(Ⅱ)將兩邊平方,即所以,當(dāng)且僅當(dāng),時取等號.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版環(huán)保物流綠色包裝運輸合同規(guī)范3篇
- 二零二五版?zhèn)€人房產(chǎn)抵押貸款債權(quán)轉(zhuǎn)讓合同3篇
- 二零二五版財務(wù)會計崗位聘用合同9篇
- 二零二五版智能家居股份制合作合同范本3篇
- 二零二五年度鋼結(jié)構(gòu)工程鋼筋加工與配送合同范本3篇
- 二零二五版工業(yè)4.0工廠生產(chǎn)承包服務(wù)合同模板3篇
- 二零二五年房產(chǎn)共有權(quán)份額轉(zhuǎn)讓產(chǎn)權(quán)買賣合同范本含份額調(diào)整方案3篇
- 二零二五版?zhèn)€人承包公司物流運輸合作合同書6篇
- 二零二五版安徽省勞動合同解除爭議調(diào)解服務(wù)合同2篇
- 二零二五年度能源股權(quán)轉(zhuǎn)讓居間服務(wù)合同范本2篇
- 大型活動聯(lián)合承辦協(xié)議
- 工程項目采購與供應(yīng)鏈管理研究
- 2024年吉林高考語文試題及答案 (2) - 副本
- 拆除電纜線施工方案
- 搭竹架合同范本
- Neo4j介紹及實現(xiàn)原理
- 焊接材料-DIN-8555-標(biāo)準(zhǔn)
- 工程索賠真實案例范本
- 重癥醫(yī)學(xué)科運用PDCA循環(huán)降低ICU失禁性皮炎發(fā)生率品管圈QCC持續(xù)質(zhì)量改進(jìn)成果匯報
- 個人股權(quán)證明書
- 醫(yī)院運送工作介紹
評論
0/150
提交評論