版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter5
綠色化學技術(shù)5.1
Theperformanceofcatalystsinchemicalreaction5.2
Greenchemistryandcatalysis5.3
Thedesignofhighefficientandsafecatalyst5.4
Changingstartingmaterialforchemicalreaction5.5
Changingreagents5.6
Changingthesolventofchemicalreaction5.7
Processcontrolandprocessintensification5.1
TheperformanceofcatalystsinchemicalreactionThefunctionofcatalyststo
chemicalreactionAcceleratethechemicalreactionrateNamely,theuseofcatalystscancontroltheselectivityforspecialproducts.Synthesizethespecialconformationofchiralisomers(手性異構(gòu)體)Incorporatewithreactionconditions,andcontroltheselectivityofchemicalreaction.Catalysthasbeencalledas
molecularmachine
allthereactionsinbiomassarecatalyzedbyenzymewithhighspecificities,selectivityandatomeconomy.MolecularMachine
Recentinvestigationshavereportedthatnotonlyenzymeactsasmolecularmachinebutalsothecommoncatalystsownthesimilarfunctions.Theclassicalexampleisthemetalcyclopentadiene(環(huán)戊二烯)complexwhichwasusedasthecatalystinolefin(烯烴)polymerizationCatalysthasbeencalledas
molecularmachine
continueZiegler-Nattacatalyst:mechnsim?。
Enzymeandothertraditionalchemicalcatalyst.Iftheyexhibithighspecificity,selectivity,yieldandatomeconomy,theyshouldbeconsideredasthemolecularmachinewithspecialfunctionsinchemicalreactions.Catalysthasbeencalledas
molecularmachine
5.2GreenChemistryandCatalysisCatalysisandPollutionProtectionTheactivationofnewstartingmaterials
CatalysisandProcessPromotion
Automobileexhaustpurifyingcatalyst(threewayconversioncatalyst,TWC)CatalysisandPollutionProtectionCatalystreactiononTWC
CxHy+O2CO2+H2OCO+O2CO2NOx+COCO2+N2
CompositionofTWC
Activecomponent:Pt,Pd,Rh
Supports:γ-Al2O3,Cordierite(堇青石)Additive:Ce,La,Ba,ZrCatalyticcombustionHighTemperature,NOX.LoadcatalystLowerTemperatureHigh-temperatureflameisoftennotcompletecombustionoffuel.Inadditiontogeneratingcarbondioxideandwater,sidereactionswilloccurinthehightemperatureflameproducingtoxiccompoundssuchasNOx,COandCxHy.
thecatalyticutilizationofCO2Energy-savingandRecoveryofcarbondioxidefromfluegasExploitingCarbondioxideasaresource
CO2+H2CH3OHGasoline
Catalysisplaysaimportantroleinnewlysynthesize
routewithoutpollutionThechemicalreactionmaybecomemoreeffectiveandmoreselectiveovercatalyst,whichcandecreasetheformationofby-productsandotherwastes.Catalystscanimprovethereactionconditions,suchastemperature,pressureandenergyconsuming,andeliminatetheusageoftoxicreactionmedium.
Inshort,theutilizationofcatalystcansatisfytherequirementsofGreenChemistry,simulatouslyThesynthesisofpyrocatechol
Traditionally:Benzeneisharmful,Toomanysteps,By-products(ketenehydroquinone),SO2isnotsafechemicals,continueTheactivationofnewstartingmaterials
Draths&Frostglucose(葡萄糖)asstartingmartialAvoidtheusageoftoxicandharmfulchemicalsandsharplydecreasetheyieldofby-products.CH2=CH2O2PdCl2CuCl2水溶液
CH3CHO
Disadvantages:ConsumelargeamountofcatalystsTheconsternationofCl-isgreater,andcanleadtotheformationofchromateby-products.Thoseby-productsisharmfultohumanhealthyThesynthesisofaceticaldehyde
3.CatalyticProcessPromotion
ThesynthesisofhydrochinoneTraditionalMethod:Disadvantage:toomanysteps,alargemountofby-product,corrosivechmicals(H2SO4,HCl)Environmentalbeigenmethod:
Advantages:Greenermethod:Shortreactionchain,By-productsonlyformattedinthefinalstep.R1C(OH)R2R1COR2cat.microwaveVarmaetal:theactivationundermicrowaveandcatalystTraditionallyOrganicsolvent;CrO3,KMnO4;SlatpollutionThesynthesisofcarbonylcompoundsConversionofBiomassBamboosSmallMoleculesSuchas:CH3COOH,CH3OHetcNewCatalysts
5.3TheDesignofHighEfficient
andSafeCatalyst1:Grossanalysis
1.Atfirst,analyses:thepossibilityofreactionandthelargestequilibriumyelidtheoptimizedreactionconditiontheavailablemartialsatomeconomyofreactioninrealreactioneconomyofcatalystseconomyofcatalyticreactionsinordertounderratedthereliabilityofrealcatalysts2.Severalfactorsshouldbeconsideredtodesignparametersofcatalysts.activity,selectivity,stability,durationandtoxicity,etc3.Accordingtothereactionroutes,searchthecatalystandpossiblestartingmaterials,choosethemostfavorablecatalysts,modifyandoptimizethereactionconditions.4.Confirmthereactionpossibilityexperimentally.Iftheexperimentsdonotconfirmthetheoreticalperdition,theprocessshouldbere-designed.Grossanalysis
2.designanddevelopthenewtypemoleculeoxygenoxidativecatalystsTraditionalinorganicoxidants:NaClO,NaBrO,HNO3,KHSO3,CrO3,KMnO4,KCr2O7,etc.Thetraditionalinorganicoxidativecanintroducealargeamountofwastesalts,hazardousgasesandliquidsheavyatomsO2:ThecleanestoxidativechemicalThelimitationofitsreactionconditions,OftencompaniedbyotherauxiliaryoxidantsCleanoxidantsandtheircharactersCleanoxidativeandtheircharactersH2O2H2O2containmorethan47percentactiveoxygen,anditsoxidativeproducts(water)isenvironmentalbenignchemical.H2O2ismoreexpensivethanO2andO3,andcandiscorporateinroomtemperature
O3:O3isalsotheenvironmentalbenignchemicaloxidative,anditsoxidativeproductsisoxygenmolecule.ButtheusageofO3oftenrequiresomespecialmethodandequipments.CleanoxidativeandtheircharactersO3tubetransformerN2O:itsoxidativeproductsisenvironmentalbenignproduct(N2)thesynthesisofN2OiscomplexandthecostofN2Oisveryhigh.CleanoxidativeandtheircharactersLatticeoxygen:Catalyst:multivalenttransitionmetalcompositeoxidesOxidants:oxygenandairRedoxcircleCatalyticmembranereactorAdvantages:HighselectivityNodangerofexplosionEasyseparationofreactantsDesignofoxidativecatalystbasedonthereactionmechanismThereactionmechanismofdifferentreactionsystem,includingcatalysts,mayvary.Hence,therequirementsforcatalystsshouldalsobedifferent.Thedesignofcatalystsshouldbetoughlyconsideredthereactionmechanismtomeettherequirementofreaction.Metalcomplexes
Thosemetal-organicscatalystsarewidelyusedinhomogenouscatalyticreactionsChiralmetalcomplexeshavebeenusedashomogenouscatalyst,andcancontrolthestereo-selectivity(立體選擇性)ofthereaction.Itisveryimportantforhighstereo-selectivitytosearchthesuitablereactionconditions,propercentralmetalionsandchitalgroups(手性基團).3、Thedesignofnew-typemetalcomplexcatalystsSample:thesynthesisofNaproxenTheyieldoftargetproduct(S-Naproxen)reaches97%。
Table5-2SomemetalcomplexesinindustryChiral
complesxIndoctrinationtimeRuBINAPAminehydrogenation1991RuBINAPchinoiline1987(Isoquinolalkaloid)RuBINAPTerpenealcoholhydrogenation1987RuBINAPKetenehydrogenation1911CuSthiffbaseComplexes1985(Cyclopropanationofolefins)RhBINAPhexahydrothymol19904,DesigningofNewMolecularSieveCatalyst
MolecularSieve(分子篩)Molecularsievereferstoakindofinorganicpolymercomposedofaluminumsilicate(siliconaluminate),bearingopenstructure.Structurally,
molecularsievebearsthetetra-XO4structure,inwhichoneatomXsharesOwithotherXatoms.Xmaybetri-(Al,B,orGa),tetra(Ge,Si)-,orpenta-(P)valent.DesigningofNewMolecularSieveCatalyst
DesigningofNewMolecularSieveCatalyst
Theporediameterofmolecularsieveisdependantonthenumberofbuildingunits,andthemolecularsieveisgenerallynamedmacro-,meso-,ormicro-molecularsievecorrespondedrespectivelytothemeanporediameterof0.75,0.67or0.43nm.NaturalMolecularSieve(Zeolite)iswidelyusedinpetrolrefineryforitsmacroporestructure.Synthesizedzeoliteisnowcommercializedandhasbecomeoneofthemostimportantcatalystinpetrolindustry.DesigningofNewMolecularSieveCatalyst
XNaturalMolecularSieve(Zeolite)isalsousedinionexchangeprocess.BecauseNaturalMolecularSieve(Zeolite)oftenownsacidandbasesitesstimulatously.Incatalysis,molecularsieveiswidelyusedasanewacid-basecatalystintherelatedreactionssuchastheconversionofalkanes.DesigningofNewMolecularSieveCatalyst
Thealkylattionofbutene:Traditionalmethod:HFand/orH2SO4areusedasthecatalysts.Advantage:highefficiencyDisadvantages:erosionofHF/H2SO4productionofinorganicsaltsHFcouldberecycled,butH2SO4couldnotandshouldberemoved.theuseofsolidmolecularsieveacidcatalyst:Theerosionofliquidacidiseliminated,Noinorganicsaltsaswastesproduced.SolidacidcatalystMolecularSievecouldalsobeusedasbasiccatalystsoracidic-basicbifunctionalcatalystalreadyusedfortheproductionoffundamentalchemicalsbutnotaswidelyasacidcatalystsItwillundoubtedlyplayanimportantroleintheproductionoffinechemicalsandspecialchemicals.Forexample,CsMolecularsieveisusedinthesynthesisof4-methyl-thiazoline(4-甲基噻啉,onekindofanti-fungus)insteadofCl2orCS2andNaOH.
ChangingtheselectivityofachemicalreactionoriginatedfromtheshapeofmolecularsievebychemicalmodificationofmolecularsieveTheselectivityofchemicalreactionsbasedontheshapeofthemolecularsievecouldbealteredbychemicalmodificationofthemolecularsieveusedasthecatalysts,thisprovideswideapplicationsofmolecularsieveincontrollingchemicalreactions.For
ExampleInthesynthesisof2,6-di-isopropylnaphthalene,amixtureof2,6-,2,7-,and2,4-substitutednaphthaleneisobtainedusingordinarymethods.
2,4-di-isopropylnaphthalene+2,7-di-isopropylnaphthalene2,6-di-isopropylnaphthaleneThetraditionallyusedcatalystSiO2/Al2O3haslargepores,andcouldnotdistinguish3-substituted-isopropylnaphthalenefrom4-substituted-isopropylnaphthalene,andthedistinguishof
2,6-di-isopropylnaphthalenefrom2,7-di-isopropylnaphthalenecouldneitherberealized.Theseparationof2,6-di-isopropylnaphthaleneand2,7-di-isopropylnaphthalenebyusingspecialpolymerliquidcrystalisverytroublesomeandveryexpensive.For
ExampleTheuseofsmallporemolecularsievecouldinhibittheformationof3-,or4-,substitutedproductsbuttheformationofequivalentamountof2,6-and2,7-substitutedproductscouldnotbeavoided.Theformationof3-and4-substitutedproductscouldbeeliminated,andaratioof2,6-to2,7-substitutedproductsof7/3couldbeobtainedbyusingZeolite-Casthecatalyst.Table5-3givesoutthedistributionofproductsbyusingdifferentkindsofcatalysts.For
ExampleTable5-3,ThedistributionoftheproductsfromthealkylationofnaphthalenebyusingdifferentkindsofcatalystsCatalystPorediameter/nm2,6-/2,7-2,6-isomer%SiO2/Al2O36.0132L-molecularsieve0.710.822B-molecularsieve0.73137C*zeolite0.72.770ZSM-50.55Verylowactivity
Prospectfortheresearchofmolecular
sievecatalystsMolecularsievecatalystsmayreplacesuchsubstanceasHF,H2SO4,etc.,whichareobviouslydangeroustopeople’shealthandtheenvironment.Thus,molecularsievecatalystisregardedasonekindofenvironmentallybenigncatalyst.Simultaneously,onaccountofthesignificantincreaseoftheactivityandselectivityduetotheuseofmolecularsievecatalyst,theresearchofmolecularsievecatalystwillundoubtedlybecomeoneofthemostpromisingfieldingreenchemistry.Chapter5Techniques
inGreenChemistry5.1
TheperformanceofCatalystsinChemicalreaction5.2
GreenChemistryandCatalysis5.3
TheDesignofHighEfficientandSafeCatalyst5.4
ChangingStartingMaterialforChemicalreaction5.5
ChangingReagents5.6
ChangingthesolventofChemicalReaction5.7
ProcessControlandProcessIntensificationReferences5.4ChangingStartingMaterialforChemicalReactionSelectionofstartingmaterialsThefeedstockhasgreatinfluenceontheefficiencyofthesyntheticroutes,ontheenvironmentaleffectsandthehealthyofhumanbeings.Thehazardoffeedstockmustbeconsideredbytheproducers,managersinthepreservationandtransportation,aswellastheoperatorsintheprocessing.Forsomebulkchemicals,thechangeoffeedstockmaychangethemarket,forsomesubstanceareproducedjusttoprovidecertainfeedstock.1.Reducinghazardousproperties(1).Certainly,afirstlevelassessmentofanystartingmaterialmustbewhetherthesubstanceitselfisbenign;whetheritposesahazardforhumanbeingsandfortheenvironments;whetheritposesahazardintheformofeithertoxicity,accidentpotential,ecosystemdestruction,orotherform;whetheritisdestructivefortheecologicalenvironmentwhetheritposesotherun-benignproperties(2).UsingpreferablesourcesCurrently,morethan90%organicstartingmaterialsarealmostexclusivelyderivedfromnon-renewablecarbonfeedstocks,suchascoalorcrudeoil.Petrol-refineryisenergyconsuming.Forexample,intheU.S.,theamountofenergyconsumedinpetrol-refineryisabout15%ofitsenergyconsumption.Thecostwillaugmentforthequalityofthecrudeoilisbecomingbad.Intheproductionoforganicchemicalsfromoil,oxidationreactionsareusuallyemployed,anditiswellknownthatoxidationreactionsareseriouslypollutant.usingpreferablesourcesConsideringtheuseupofoil,naturalgasandcoal,wemustreduceourdependenceonthesefossilresources.Agricultureresourcesandbio-resourcesaregoodalternative.Recentstudiesshowthat,manyagricultureresources,suchascorn,potato,soybean,andsooncouldbeconvertedtotextiles(紡織品)ornylon.Agriculturewaste,biomasscontainingcellulose(纖維素)andlignin(木質(zhì)素)couldalsobeconvertedtochemicals.2.Advantagesanddisadvantagesofbiomassasachemicalfeedstock(1).Advantagesadvantagesbiomasscanbebrokedownintoahugearrayofstructurallydiversematerials,frequentlystereochemically(立體化學的)andenantiomerically(對映體的)defined,givingtheuserawiderangeofnewstructuralfeaturestoexploitinsynthesis.Thestructuralcomplexityofthebuildingblocksavailablefrombiomassisfrequentlyhigherwhencomparedtobuildingblocksderivedfrompetrochemicals.Thispropertycouldleadtoareductionofreactionsideproducts,andhence,areductionoftheamountofwastematerialproducedinchemicalprocessesifmethodologywereavailabletoincorporatethiscomplexityintofinalproducts.
advantagesBuildingblocksisolatedfromcrudeoilarenotoxygenated,yetmanyofthefinalproductsofthechemicalindustryare.Therearefewwaystoaddoxygentohydrocarbons,andmanyofthemrequiretheuseoftoxicreagents(chromium,lead,etc.)instoichiometricamountsresultinginseverewastedisposalproblems.Biomassderivedmaterialsareoftenhighlyoxygenated.advantagesIncreaseduseofbiomasswouldextendthelifetimeoftheavailablecrudeoilsupplies,andthenmakecontributiontosustainabledevelopmentandmakesuretheproductionofcertainchemicalsthatcouldonlybesynthesizedfromoil.TheuseofbiomasshasbeensuggestedasawaytomitigatethebuildupofgreenhouseCO2intheatmosphere.SincebiomassusesCO2forgrowththroughphotosynthesis,theuseofbiomassasafeedstockresultsinnonetincreaseinatmosphericCO2contentwhentheproductsbreakdownintheenvironment.
advantagesAchemicalsindustryincorporatingasignificantpercentageofrenewablematerialsissecurebecausethefeedstocksuppliesaredomestic,leadingtoalesseneddependenceoninternational‘hotspots’.advantagesBiomassisamoreflexiblefeedstockthaniscrudeoil.Crudeoilisformedanditscompositionsetbygeologicalforces.Thediversityofbuildingblocksfrombiomassoffersagreatopportunityfortheproductionofarangeofchemicalsaswideasthatavailablefromnon-renewables.Withtheadventofgeneticengineering,thetailoringofcertainplantstoproducehighlevelsofspecificchemicalsisalsopossible.advantages(2)、disadvantages
Manyofthereporteddisadvantagesarerelatedtocurrenteconomiccircumstances.Thepetrochemicalindustryishugeandhighlyefficient,fromtheinitialremovalofcrudeoil,totheextractionofthesimplerbuildingblocksthatcomprisethecrudeoil,throughthefinaltransformationofthesebuildingblocksintotheirmanyintermediatesandchemicalproducts.Moreover,thepetrochemicalindustryiswellestablished.Muchofitscapitalinvestmentispaidoff.Themechanismsandoperationofitsprocessesarewellunderstoodandgivesingleproductsofhighpurity.Thebiomassindustryisstilldevelopingprocessesthatpossessthesefeatures.disadvantagesManyofthebiomasssourcesbeingconsideredaschemicalfeedstockshavetraditionallybeenusedassourcesoffood,andthejustificationfordivertingpartofthisresourcetochemicalproductionhasbeenquestioned.Theissuebecomesmoreacutewhenbiomassisconsideredasafeedstockforfuelaswellaschemicalproduction.Biomassalsorequiresspacetogrow,andtheenvironmentalimpactoflargescalebiomassplantationshasbeenexamined.
disadvantagesTraditionalsourcesofchemicalfeedstockshavebeenreferredtoas‘threedimensional’becausethestructuresinwhichtheyarefoundhavedepthaswellaslengthandwidth.Thepresenceofthethirddimensionallowsmuchmorefeedstocktobeconcentratedinasmallerarea.Incontrast,biomassfeedstocksare‘twodimensional’feedstocks,andrequireproportionallymorespaceforthesameamountofmaterial.disadvantagesBiomassisnecessarilyseasonal.Thecropisplantedinonepartoftheyear,andharvestedinanother.Thisleadstopeaksandvalleysinthesupplyoffeedstock;yetthechemicalproducerplanningtousebiomassneedsaregulardaytodaysupply,andneedstobeassuredthatthematerialusedatthebeginningoftheyearwillbeofthesamequalityasthatusedattheendoftheyear.disadvantagesThewiderangeofmaterialsthatcomprisebiomasscouldbeadetrimentespeciallyifnewprocessesneedtobedevelopedforeachfeedstock.Moreover,thebuildingblocksextractedfrombiomassareforeigntotraditionalchemicalproducersandmustbedemonstratedtofunctioninamannersimilartoexistingbuildingblockswithoutunduemanipulation.disadvantagesChapter5Techniques
inGreenChemistry5.1
TheperformanceofCatalystsinChemicalreaction5.2
GreenChemistryandCatalysis5.3
TheDesignofHighEfficientandSafeCatalyst5.4
ChangingStartingMaterialforChemicalreaction5.5
ChangingReagents5.6
ChangingthesolventofChemicalReaction5.7
ProcessControlandProcessIntensificationReferences
5.5ChangingReagents
SelectionofreagentsManyprogresshavebeenachievedinthisaspectongreenchemistryForexample:
Usinglightinsteadofsomereagents;Usingrecoverablecatalystasitispossible;Loadingthereagentsonthesupporttorealizethereactions(usingoxidativeagents,reductiveagentstorealizetheloading)
Highsyntheticefficiency;practicable;benigntohuman’shealthandtheenvironmentSelectionofreagentsForexample,fortheoxidationoftertiaryhydrocarbonstoketones,thetraditionalmethodinvolvesthereactionofcopperacetateandhydrogenperoxideintheaqueoussolution,whereas,thisreactioncanalsobewellrealizedbysupportingnitrateofcopperontothehydrogenperoxideimpregnatedK10clay.Highsyntheticefficiency;practicable;benigntohuman’shealthandtheenvironment5.6
ChangingreactionsolventIssolventnecessaryforthereaction?AqueoussolutionsystemIonicliquid
Immobilizationofthesolvent——SolutionofpolymerCarryingoutpolymerizationreactionsusingthesolventasoneofthemonomertoobtainpolymerized-solvent-derivatesthatbearthepropertyofthesolvent.Sincethissolventisanchoredonthepolymer,thustheseparationoftheproductsfromthesolventiseliminatedandpollutionfromthevolatilesolventisalsoeliminated.Solvent-freereactionBandgeretalcombinetheuseofenvironmentallybenigncatalystandmicrowavetosynthesis3-carbinyl-coumarinfromdi-methyoxybenzaldehydeandMeldrumacidwithoutusingsolvent.
Thecombinationofmicrowaveandcatalystinsteadofsolventiseffectiveinsuchprocessesasgroupprotection,deprotection,oxidation,reduction,rearrangementreaction.SupercriticalRegionPressureCriticalPointTemperaturePcTcLiquidVapourSolid超臨界區(qū)FormationofSCFCO2FormationofSCFCO2Transmissioncharacters
ofSCFSCF:Density:Similartoliquid;Viscosity:1/100thanliquid:Liquidity:muchbetterthanliquidReynoldsnumber:muchbetterthanliquid(samecurrentvelocity)。Transfercoefficient:muchbetterthanliquid;NewtonFormulaμ=τyx/dμx/dy
Withtemperatureincreasing,forgas:Viscosityincreasesforliquid:Viscositydecreases.
SCF:Itsviscosityisnotequaltothatofliquidorgas.ButitisliabletothatofliquidViscosityPartialmolarvolumeInSCF,thepartialmolarvolumeofinfinitedilutionsoluteisnegativeNearthecriticalregion,itwillfurtherbecomemorenegative(about-1000~16000ml/mol)AdvantagesofSCFinchemicalreactionsolvent1.ItisconvenienttoadjusttheprosperityofSCFfromlikegas-likephasetoliquid-likephaseintermofcontrollingpressure.Thatistosay,thecontrolofpressurecanaltertheprosperityofSCF,whichmakesthereactionbecomemoreeffective.2.ThecontrolofpressurecanadjustthedensityofSCF,andcanalsoadjustotherpropertiesrelatedwithdensity,suchasdialecticconstantandviscosity,whichpromotethepossibilitiestocontrolreactionandtoincreasesthereactiveselectivity.3.SCFalsoowncharacteristicslikesomegases,suchaslowviscosity,largediffusioncoefficient,whichismuchimportanttoacceleratethereactionrate,especiallytothosereactionsincludinggaseousreactants.Anotheradvantageofnon-oxidizabilityforSCFCO2makesitbecomeanidealreactionsolvent.ThehighconcentrationofCO2inSCFCO2makeitliabletoreactinitsSCFcondition,whichacceleratethereactionrateandmakesomereactiontooccur.AdvantagesofSCFinchemicalreactionsolventChapter5Techniques
inGreenChemistry5.1
TheperformanceofCatalystsinChemicalreaction5.2
GreenChemistryandCatalysis5.3
TheDesignofHighEfficientandSafeCatalyst5.4
ChangingStartingMaterialforChemicalreaction5.5
ChangingReagents5.6
ChangingthesolventofChemicalReaction5.7
ProcessControlandProcessIntensificationReferences
5.7ProcessControlandProcessIntensification
ThemonitoringAndcontrollingofChemicalProcessProcessintensificationIfsmallamountofadangerouspollutant(X)willformintheprocessofareactionasaside-product,anditsformationisfacilitatedunderhighpressureandathightemperature,insitumonitoringoftheformationofXcouldbeappliedtodetectcontinuouslyproductionofX,andifitsconcentrationsurpassesacertainthreshold,thereactionconditions(temperatureandpressure)willbechangedimmediatelytoreduceitsproduction.
1.ThemonitoringandcontrollingofChemicalProcessOtherreactionparameters,suchastheratioofthefeedandsooncouldalsobecontrolledinsitutofacilitateorinhibittheformationofcertainproduct.2.Processintensificationastrategyformakingdramaticreductionsinthesizeofachemicalplantsoastoreachagivenproductionobjective.
Definition:viaimprovementoftechnicalmethodsviaimprovementoftechnicalmethods2.Processintensification
ProcessintensificationviaimprovementofequipmentThesereductionscancomefromshrinkingthesizeofindividualpiecesofequipmentcuttingthenumberofunitoperationsorapparatus
ProcessintensificationviaimprovementofequipmentStaticMixerReactorMonolithicCatalystMicroreactors(1)Static-mixer-reactor(SMR)
Thetechnologyofstirringhasbeengreatlyintensifiedduringthelast30years.Surprisingly,thiswasachievednotbyimprovingmechanicalmixerbutquitetheoppositebyabandoningthem—infavorofstaticmixer.Thesedevicesarefineexamplesofprocess-intensifyingequipment.Theyofferamoresize-andenergy-efficientmethodformixingorcontactfluid.
SulzerSMRstatic-mixer-reactor,whichhasmixingelementsmadeofheat-transfertubes,cansuccessfullybeappliedinprocessesinwhichsimultaneousmixingandintensiveheatremovalorsupplyarenecessary,suchasinnitrationorneutralizationreactions.SulzerSMRstatic-mixer-reactorOneofthemoreimportantdisadvantagesofstatic-mixing-reactoristheirrelativelyhighsensitivitytocloggingbysolids.Therefore,theirutilityforreactionsinvolvingslurrycatalystsislimited.Sulzersolvedthisproblem(atleastpartially)bydevelopingstructuredpackingthathasgoodstatic-mixingpropertiesandthatsimultaneouslycanbeusedasthesupportforcatalyticmaterial.(2).MonolithiccatalystMaterialsusedinthepreparationofmonolithiccatalysts:MetallicorNon-metallicsubstratesWhichcouldprovideamultitudeofstraightnarrowchannelsofdefineduniformcross-sectionalshapes.Toensuresufficientporosityandenhancethecatalyticallyactivesurface,theinnerwallsofthemonolithicchannelsareusuallycoveredwithathinlayerofwashcoat,whichactsasthesupportforthecatalyticallyactivespecies.Thecharacteristicsofmonolithiccatalystsverylowpressuredropinthesingleandtwophaseflow,onetotwoordersofmagnitudelowerthanthatofconventionalpackedsystems;highgeometricalareasperreactorvolume,typically1.5-4timesmorethaninthereactorswithparti
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水利工程EPC項目合同
- 人力資源管理博士教師聘用合同
- 建筑安防系統(tǒng)監(jiān)理合同協(xié)議
- 建筑裝飾合同管理要點
- 租賃消防車輛合同
- 知識產(chǎn)權(quán)合同招標管理辦法
- 舞廳墻地磚鋪設(shè)合同
- 員工協(xié)商解除勞動合同
- 區(qū)塊鏈合同填寫要點
- 信息技術(shù)招投標合同結(jié)算培訓
- 《春節(jié)的文化與習俗》課件
- 手機棋牌平臺網(wǎng)絡(luò)游戲商業(yè)計劃書
- 學校體育與社區(qū)體育融合發(fā)展的研究
- 醫(yī)療機構(gòu)高警示藥品風險管理規(guī)范(2023版)
- 一年級體質(zhì)健康數(shù)據(jù)
- 八年級物理(上)期中考試分析與教學反思
- 國家開放大學《財政與金融(農(nóng))》形考任務1-4參考答案
- 2023銀行網(wǎng)點年度工作總結(jié)
- 工廠反騷擾虐待強迫歧視政策
- 計算機教室(微機室)學生上機使用記錄
- FAI首件檢驗報告
評論
0/150
提交評論