




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市黃浦區(qū)大同中學新高考數學二模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.2.已知正項等比數列的前項和為,則的最小值為()A. B. C. D.3.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學生李華計劃在高一年級每周星期一至星期五的每天閱讀半個小時中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計劃共有()A.120種 B.240種 C.480種 D.600種4.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.65.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.6.設命題p:>1,n2>2n,則p為()A. B.C. D.7.已知是偶函數,在上單調遞減,,則的解集是A. B.C. D.8.若函數f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實數a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)9.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件10.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.311.復數滿足,則()A. B. C. D.12.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.函數在區(qū)間內有且僅有兩個零點,則實數的取值范圍是_____.14.如圖,某地一天從時的溫度變化曲線近似滿足函數,則這段曲線的函數解析式為______________.15.如圖,的外接圓半徑為,為邊上一點,且,,則的面積為______.16.已知數列遞增的等比數列,若,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,以橢圓C左頂點T為圓心作圓,設圓T與橢圓C交于點M與點N.(1)求橢圓C的方程;(2)求的最小值,并求此時圓T的方程;(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:為定值.18.(12分)已知,均為正數,且.證明:(1);(2).19.(12分)已知數列的前項和和通項滿足.(1)求數列的通項公式;(2)已知數列中,,,求數列的前項和.20.(12分)設函數.(1)當時,求不等式的解集;(2)若對任意都有,求實數的取值范圍.21.(12分)已知動圓Q經過定點,且與定直線相切(其中a為常數,且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.22.(10分)設函數.(1)當時,求不等式的解集;(2)當時,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數的基本關系式,考查二倍角公式,屬于基礎題.2、D【解析】
由,可求出等比數列的通項公式,進而可知當時,;當時,,從而可知的最小值為,求解即可.【詳解】設等比數列的公比為,則,由題意得,,得,解得,得.當時,;當時,,則的最小值為.故選:D.【點睛】本題考查等比數列的通項公式的求法,考查等比數列的性質,考查學生的計算求解能力,屬于中檔題.3、B【解析】
首先將五天進行分組,再對名著進行分配,根據分步乘法計數原理求得結果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計數原理可得不同的閱讀計劃共有:種本題正確選項:【點睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計數原理的應用,易錯點是忽略分組中涉及到的平均分組問題.4、A【解析】
由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.5、A【解析】
聯立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關于的關系式,解方程求解即可.【詳解】聯立方程,解方程可得或,不妨設A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關于的關系式是求解本題的關鍵;屬于中檔題、??碱}型.6、C【解析】根據命題的否定,可以寫出:,所以選C.7、D【解析】
先由是偶函數,得到關于直線對稱;進而得出單調性,再分別討論和,即可求出結果.【詳解】因為是偶函數,所以關于直線對稱;因此,由得;又在上單調遞減,則在上單調遞增;所以,當即時,由得,所以,解得;當即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數的性質解對應不等式,熟記函數的奇偶性、對稱性、單調性等性質即可,屬于??碱}型.8、C【解析】
求函數導數,分析函數單調性得到函數的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數,在(-2,0)上是減函數,作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結合圖象可知,解得a∈[-3,0),故選C.【點睛】本題主要考查了利用函數導數研究函數的單調性,進而研究函數的最值,屬于??碱}型.9、A【解析】
根據充分條件和必要條件的定義,結合線面垂直的性質進行判斷即可.【詳解】當m⊥平面α時,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結合線面垂直的性質和定義是解決本題的關鍵.難度不大,屬于基礎題10、D【解析】
畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標函數,即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標函數為直線方程的斜截式,.由圖可知當直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標函數轉化為的形式,在可行域內通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標函數即可求出最值.注意畫可行域時,邊界線的虛實問題.11、C【解析】
利用復數模與除法運算即可得到結果.【詳解】解:,故選:C【點睛】本題考查復數除法運算,考查復數的模,考查計算能力,屬于基礎題.12、A【解析】
設,用表示出,求出的值即可得出答案.【詳解】設由,,.故選:A【點睛】本題考查了向量加法、減法以及數乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對函數零點問題等價轉化,分離參數討論交點個數,數形結合求解.【詳解】由題:函數在區(qū)間內有且僅有兩個零點,,等價于函數恰有兩個公共點,作出大致圖象:要有兩個交點,即,所以.故答案為:【點睛】此題考查函數零點問題,根據函數零點個數求參數的取值范圍,關鍵在于對函數零點問題恰當變形,等價轉化,數形結合求解.14、,【解析】
根據圖象得出該函數的最大值和最小值,可得,,結合圖象求得該函數的最小正周期,可得出,再將點代入函數解析式,求出的值,即可求得該函數的解析式.【詳解】由圖象可知,,,,,從題圖中可以看出,從時是函數的半個周期,則,.又,,得,取,所以,.故答案為:,.【點睛】本題考查由圖象求函數解析式,考查計算能力,屬于中等題.15、【解析】
先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進一步得到B=C,最后利用面積公式計算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【點睛】本題考查正弦定理解三角形,考查學生的基本計算能力,要靈活運用正弦定理公式及三角形面積公式,本題屬于中檔題.16、【解析】
,建立方程組,且,求出,進而求出的公比,即可求出結論.【詳解】數列遞增的等比數列,,,解得,所以的公比為,.
故答案為:.【點睛】本題考查等比數列的性質、通項公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】
(1)依題意,得,,由此能求出橢圓C的方程.(2)點與點關于軸對稱,設,,設,由于點在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設,則直線MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得,,,故橢圓C的方程為.(2)點與點關于軸對稱,設,,設,由于點在橢圓C上,所以,由,則,.由于,故當時,的最小值為,所以,故,又點在圓T上,代入圓的方程得到.故圓T的方程為:(3)設,則直線MP的方程為:,令,得,同理:.故又點與點在橢圓上,故,代入上式得:,所以【點睛】本題考查了橢圓的幾何性質、圓的軌跡方程、直線與橢圓的位置關系中定值問題,考查了學生的計算能力,屬于中檔題.18、(1)見解析(2)見解析【解析】
(1)由進行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當且僅當時取等號,∴.(2).當且僅當時取等號.【點睛】本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉化的數學思想方法,屬于中檔題.19、(1);(2)【解析】
(1)當時,利用可得,故可利用等比數列的通項公式求出的通項.(2)利用分組求和法可求數列的前項和.【詳解】(1)當時,,所以,當時,,①,②所以,即,又因為,故,所以,所以是首項,公比為的等比數列,故.(2)由得:數列為等差數列,公差,,,.【點睛】本題考查數列的通項與求和,注意數列求和關鍵看通項的結構形式,如果通項是等差數列與等比數列的和,則用分組求和法;如果通項是等差數列與等比數列的乘積,則用錯位相減法;如果通項可以拆成一個數列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現,則用并項求和法.20、(1)(2)【解析】
利用零點分區(qū)間法,去掉絕對值符號分組討論求并集,對恒成立,則,由三角不等式,得求解【詳解】解:當時,不等式即為,可得或或,解得或或,則原不等式的解集為若對任意、都有,即為,由,當取得等號,則,由,可得,則的取值范圍是【點睛】本題考查含有兩個絕對值符號的不等式解法及利用三角不等式解恒成立問題.(1)含有兩個絕對值符號的不等式常用解法可用零點分區(qū)間法去掉絕對值符號,將其轉化為與之等價的不含絕對值符號的不等式(組)求解(2)利用三角不等式把不等式恒成立問題轉化為函數最值問題.21、(1),拋物線;(2)存在,.【解析】
(1)設,易得,化簡即得;(2)利用導數幾何意義可得,要使,只需.聯立直線m與拋物線方程,利用根與系數的關系即可解決.【詳解】(1)設,由題意,得,化簡得,所以動圓圓心Q的軌跡方程為,它是以F為焦點,以直線l為準線的拋物線.(2)不妨設.因為,所以,從而直線PA的斜率為,解得,即,又,所以軸.要使,只需.設直線m的方程為,代入并整理,得.首先,,解得或.其次,設,,則,..故存在直線m,使得,此時直線m的斜率的取值范圍為.【點睛】本題考查直線與拋物線位置關系的應用,涉及拋物線中的存在性問題,考查學生的計算能力
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國臥式混合機行業(yè)投資前景及策略咨詢研究報告
- 2025中國石油化工股份有限公司安慶分公司招聘20人筆試參考題庫附帶答案詳解
- 計劃變更補充協(xié)議
- 實時驗證性能分析-全面剖析
- 報關行業(yè)監(jiān)管趨勢解析-全面剖析
- 適應動態(tài)變化的協(xié)調算法-全面剖析
- 2024年松原市教育局直屬學校招聘師范生筆試真題
- 農業(yè)電商與農村電商協(xié)同發(fā)展-全面剖析
- 皮革材料的可持續(xù)性研究-全面剖析
- 人教版三年級數學下冊 第6單元 練習十六 課件
- CRPS電源設計向導 CRPS Design Guide r-2017
- GB/T 9345.1-2008塑料灰分的測定第1部分:通用方法
- GB/T 3452.2-2007液壓氣動用O形橡膠密封圈第2部分:外觀質量檢驗規(guī)范
- 化工廢氣處理技術課件
- 四川省自貢市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細及行政區(qū)劃代碼
- 卷煙廠電氣專業(yè)筆試題
- 小學勞動課《勞動安全教育》
- 畸形舌側溝臨床對策培訓課件
- 標準變壓器用電負荷計算表
- DB12∕T 822-2018 路用高粘結力環(huán)氧乳化瀝青技術要求
- “兩票三制”專項整治工作方案(含檢查表)
評論
0/150
提交評論