




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省東莞市石碣鎮(zhèn)市級名校中考二模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.七年級1班甲、乙兩個小組的14名同學身高(單位:厘米)如下:甲組158159160160160161169乙組158159160161161163165以下敘述錯誤的是()A.甲組同學身高的眾數是160B.乙組同學身高的中位數是161C.甲組同學身高的平均數是161D.兩組相比,乙組同學身高的方差大2.﹣的絕對值是()A.﹣ B. C.﹣2 D.23.如圖,正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,CH┴AF與點H,那么CH的長是()A. B. C. D.4.若2m﹣n=6,則代數式m-n+1的值為()A.1 B.2 C.3 D.45.下列說法:①-102②數軸上的點與實數成一一對應關系;③﹣2是16的平方根;④任何實數不是有理數就是無理數;⑤兩個無理數的和還是無理數;⑥無理數都是無限小數,其中正確的個數有()A.2個 B.3個 C.4個 D.5個6.已知函數y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或17.如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是弧AB的中點,連接AC、BC,則圖中陰影部分面積是()A. B.C. D.8.如圖,點ABC在⊙O上,OA∥BC,∠OAC=19°,則∠AOB的大小為()A.19° B.29° C.38° D.52°9.在同一直角坐標系中,二次函數y=x2與反比例函數y=1x(x>0)的圖象如圖所示,若兩個函數圖象上有三個不同的點A(x1,m),B(x2,m),C(x3,m),其中m為常數,令ω=x1+x2+x3A.1B.mC.m2D.110.如圖,點A是反比例函數y=的圖象上的一點,過點A作AB⊥x軸,垂足為B.點C為y軸上的一點,連接AC,BC.若△ABC的面積為3,則k的值是()A.3 B.﹣3 C.6 D.﹣6二、填空題(共7小題,每小題3分,滿分21分)11.已知二次函數中,函數y與x的部分對應值如下:...-10123......105212...則當時,x的取值范圍是_________.12.某學校組織學生到首鋼西十冬奧廣場開展綜合實踐活動,數學小組的同學們在距奧組委辦公樓(原首鋼老廠區(qū)的筒倉)20m的點B處,用高為0.8m的測角儀測得筒倉頂點C的仰角為63°,則筒倉CD的高約為______m.(精確到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)13.如圖,已知AB∥CD,直線EF分別交AB、CD于點E、F,EG平分∠BEF,若∠1=50°,則∠2的度數為_______.14.如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交AC于E,交BC的延長線于F,若∠F=30°,DE=1,則BE的長是.15.一個不透明的袋中共有5個小球,分別為2個紅球和3個黃球,它們除顏色外完全相同,隨機摸出兩個小球,摸出兩個顏色相同的小球的概率為____.16.化簡:_____________.17.如圖,在平面直角坐標系xOy中,點A的坐標為A(1,0),等腰直角三角形ABC的邊AB在x軸的正半軸上,∠ABC=90°,點B在點A的右側,點C在第一象限。將△ABC繞點A逆時針旋轉75°,如果點C的對應點E恰好落在y軸的正半軸上,那么邊AB的長為____.三、解答題(共7小題,滿分69分)18.(10分)已知關于的一元二次方程.試證明:無論取何值此方程總有兩個實數根;若原方程的兩根,滿足,求的值.19.(5分)如圖,在平面直角坐標系xOy中,正比例函數y=x的圖象與一次函數y=kx-k的圖象的交點坐標為A(m,2).(1)求m的值和一次函數的解析式;(2)設一次函數y=kx-k的圖象與y軸交于點B,求△AOB的面積;(3)直接寫出使函數y=kx-k的值大于函數y=x的值的自變量x的取值范圍.20.(8分)如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=BE=2,sin∠ACD=,求四邊形ABCD的面積.21.(10分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.22.(10分)如圖,在?ABCD中,以點4為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于12(1)根據以上尺規(guī)作圖的過程,求證:四邊形ABEF是菱形;(2)若AB=2,AE=23,求∠BAD的大?。?3.(12分)如圖,對稱軸為直線x=的拋物線經過點A(6,0)和B(0,4).(1)求拋物線解析式及頂點坐標;(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數關系式,并寫出自變量x的取值范圍;(3)①當四邊形OEAF的面積為24時,請判斷OEAF是否為菱形?②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.24.(14分)俄羅斯世界杯足球賽期間,某商店銷售一批足球紀念冊,每本進價40元,規(guī)定銷售單價不低于44元,且獲利不高于30%.試銷售期間發(fā)現,當銷售單價定為44元時,每天可售出300本,銷售單價每上漲1元,每天銷售量減少10本,現商店決定提價銷售.設每天銷售量為y本,銷售單價為x元.請直接寫出y與x之間的函數關系式和自變量x的取值范圍;當每本足球紀念冊銷售單價是多少元時,商店每天獲利2400元?將足球紀念冊銷售單價定為多少元時,商店每天銷售紀念冊獲得的利潤w元最大?最大利潤是多少元?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據眾數、中位數和平均數及方差的定義逐一判斷可得.【詳解】A.甲組同學身高的眾數是160,此選項正確;B.乙組同學身高的中位數是161,此選項正確;C.甲組同學身高的平均數是161,此選項正確;D.甲組的方差為,乙組的方差為,甲組的方差大,此選項錯誤.故選D.【點睛】本題考查了眾數、中位數和平均數及方差,掌握眾數、中位數和平均數及方差的定義和計算公式是解題的關鍵.2、B【解析】
根據求絕對值的法則,直接計算即可解答.【詳解】,故選:B.【點睛】本題主要考查求絕對值的法則,掌握負數的絕對值等于它的相反數,是解題的關鍵.3、D【解析】
連接AC、CF,根據正方形性質求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點睛】本題考查了正方形的性質、勾股定理及直角三角形的面積,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.4、D【解析】
先對m-n+1變形得到(2m﹣n)+1,再將2m﹣n=6整體代入進行計算,即可得到答案.【詳解】mn+1=(2m﹣n)+1當2m﹣n=6時,原式=×6+1=3+1=4,故選:D.【點睛】本題考查代數式,解題的關鍵是掌握整體代入法.5、C【解析】
根據平方根,數軸,有理數的分類逐一分析即可.【詳解】①∵-102=10,∴②數軸上的點與實數成一一對應關系,故說法正確;③∵16=4,故-2是16的平方根,故說法正確;④任何實數不是有理數就是無理數,故說法正確;⑤兩個無理數的和還是無理數,如2和-2⑥無理數都是無限小數,故說法正確;故正確的是②③④⑥共4個;故選C.【點睛】本題考查了有理數的分類,數軸及平方根的概念,有理數都可以化為小數,其中整數可以看作小數點后面是零的小數,分數可以化為有限小數或無限循環(huán)小數;無理數是無限不循環(huán)小數,其中有開方開不盡的數,如2,6、D【解析】
當k+1=0時,函數為一次函數必與x軸有一個交點;當k+1≠0時,函數為二次函數,根據條件可知其判別式為0,可求得k的值.【詳解】當k-1=0,即k=1時,函數為y=-4x+4,與x軸只有一個交點;當k-1≠0,即k≠1時,由函數與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數與x軸的交點,掌握二次函數與x軸只有一個交點的條件是解題的關鍵,解決本題時注意考慮一次函數和二次函數兩種情況.7、A【解析】試題分析:連接AB、OC,ABOC,所以可將四邊形AOBC分成三角形ABC、和三角形AOB,進行求面積,求得四邊形面積是,扇形面積是S=πr2=,所以陰影部分面積是扇形面積減去四邊形面積即.故選A.8、C【解析】
由AO∥BC,得到∠ACB=∠OAC=19°,根據圓周角定理得到∠AOB=2∠ACB=38°.【詳解】∵AO∥BC,∴∠ACB=∠OAC,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故選:C.【點睛】本題考查了圓周角定理與平行線的性質.解題的關鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半定理的應用是解此題的關鍵.9、D【解析】
本題主要考察二次函數與反比例函數的圖像和性質.【詳解】令二次函數中y=m.即x2=m,解得x=m或x=-m.令反比例函數中y=m,即1x=m,解得x=1m,將x的三個值相加得到ω=m+(-m)+【點睛】巧妙借助三點縱坐標相同的條件建立起兩個函數之間的聯系,從而解答.10、D【解析】試題分析:連結OA,如圖,∵AB⊥x軸,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故選D.考點:反比例函數系數k的幾何意義.二、填空題(共7小題,每小題3分,滿分21分)11、0<x<4【解析】
根據二次函數的對稱性及已知數據可知該二次函數的對稱軸為x=2,結合表格中所給數據可得出答案.【詳解】由表可知,二次函數的對稱軸為直線x=2,所以,x=4時,y=5,所以,y<5時,x的取值范圍為0<x<4.故答案為0<x<4.【點睛】此題主要考查了二次函數的性質,利用圖表得出二次函數的圖象即可得出函數值得取值范圍,同學們應熟練掌握.12、40.0【解析】
首先過點A作AE∥BD,交CD于點E,易證得四邊形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函數的定義,而求得CE的長,繼而求得筒倉CD的高.【詳解】過點A作AE∥BD,交CD于點E,∵AB⊥BD,CD⊥BD,∴∠BAE=∠ABD=∠BDE=90°,∴四邊形ABDE是矩形,∴AE=BD=20m,DE=AB=0.8m,在Rt△ACE中,∠CAE=63°,∴CE=AE?tan63°=20×1.96≈39.2(m),∴CD=CE+DE=39.2+0.8=40.0(m).答:筒倉CD的高約40.0m,故答案為:40.0【點睛】此題考查解直角三角形的應用?仰角的定義,注意能借助仰角構造直角三角形并解直角三角形是解此題的關鍵,注意數形結合思想的應用.13、65°【解析】因為AB∥CD,所以∠BEF=180°-∠1=130°,因為EG平分∠BEF,所以∠BEG=65°,因為AB∥CD,所以∠2=∠BEG=65°.14、2【解析】∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°。∵∠F=30°,∴∠A=∠F=30°(同角的余角相等)。又AB的垂直平分線DE交AC于E,∴∠EBA=∠A=30°。∴Rt△DBE中,BE=2DE=2。15、【解析】
解:根據題意可得:列表如下紅1紅2黃1黃2黃3紅1紅1,紅2紅1,黃1紅1,黃2紅1,黃3紅2紅2,紅1紅2,黃1紅2,黃2紅2,黃3黃1黃1,紅1黃1,紅2黃1,黃2黃1,黃3黃2黃2,紅1黃2,紅2黃2,黃1黃2,黃3黃3黃3,紅1黃3,紅2黃3,黃1黃3,黃2共有20種所有等可能的結果,其中兩個顏色相同的有8種情況,故摸出兩個顏色相同的小球的概率為.【點睛】本題考查列表法和樹狀圖法,掌握步驟正確列表是解題關鍵.16、【解析】
根據分式的運算法則即可求解.【詳解】原式=.故答案為:.【點睛】此題主要考查分式的運算,解題的關鍵是熟知分式的運算法則.17、【解析】
依據旋轉的性質,即可得到,再根據,,即可得出,.最后在中,可得到.【詳解】依題可知,,,,∴,在中,,,,,.∴在中,.故答案為:.【點睛】本題考查了坐標與圖形變化,等腰直角三角形的性質以及含30°角的直角三角形的綜合運用,圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)-2.【解析】分析:(1)將原方程變形為一般式,根據方程的系數結合根的判別式,即可得出△=(2p+1)2≥1,由此即可證出:無論p取何值此方程總有兩個實數根;(2)根據根與系數的關系可得出x1+x2=5、x1x2=6-p2-p,結合x12+x22-x1x2=3p2+1,即可求出p值.詳解:(1)證明:原方程可變形為x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴無論p取何值此方程總有兩個實數根;(2)∵原方程的兩根為x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.點睛:本題考查了根與系數的關系以及根的判別式,解題的關鍵是:(1)牢記“當△≥1時,方程有兩個實數根”;(2)根據根與系數的關系結合x12+x22-x1x2=3p2+1,求出p值.19、(1)y=1x﹣1(1)1(3)x>1【解析】試題分析:(1)先把A(m,1)代入正比例函數解析式可計算出m=1,然后把A(1,1)代入y=kx﹣k計算出k的值,從而得到一次函數解析式為y=1x﹣1;(1)先確定B點坐標,然后根據三角形面積公式計算;(3)觀察函數圖象得到當x>1時,直線y=kx﹣k都在y=x的上方,即函數y=kx﹣k的值大于函數y=x的值.試題解析:(1)把A(m,1)代入y=x得m=1,則點A的坐標為(1,1),把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,所以一次函數解析式為y=1x﹣1;(1)把x=0代入y=1x﹣1得y=﹣1,則B點坐標為(0,﹣1),所以S△AOB=×1×1=1;(3)自變量x的取值范圍是x>1.考點:兩條直線相交或平行問題20、(1)證明見解析;(2)S平行四邊形ABCD=3.【解析】試題分析:(1)根據平行四邊形的性質得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根據平行線的判定得出AD∥BC,根據平行四邊形的判定推出即可;(2)證明△ABE是等邊三角形,得出AE=AB=2,由直角三角形的性質求出CE和DE,得出AC的長,即可求出四邊形ABCD的面積.試題解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∵AB∥CD,∴四邊形ABCD是平行四邊形;(2)∵sin∠ACD=,∴∠ACD=60°,∵四邊形ABCD是平行四邊形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE是等邊三角形,∴AE=AB=2,∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE=CD=1,∴DE=CE=,AC=AE+CE=3,∴S平行四邊形ABCD=2S△ACD=AC?DE=3.21、(1);(2).【解析】
(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據概率的意義解答即可;(2)畫出樹狀圖,然后根據概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數與總情況數之比.22、(1)見解析;(2)60°.【解析】
(1)先證明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可證明;(2)連結BF,交AE于G.根據菱形的性質得出AB=2,AG=12AE=3【詳解】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四邊形ABEF是平行四邊形,∵AB=BE,∴四邊形ABEF是菱形;(2)連結BF,交AE于G.∵AB=AF=2,∴GA=AE=×2=,在Rt△AGB中,cos∠BAE==,∴∠BAG=30°,∴∠BAF=2∠BAG=60°,【點睛】本題考查了平行四邊形的性質與菱形的判定與性質,解題的關鍵是熟練的掌握平行四邊形的性質與菱形的判定與性質.23、(1)拋物線解析式為,頂點為;(2),1<<1;(3)①四邊形是菱形;②不存在,理由見解析【解析】
(1)已知了拋物線的對稱軸解析式,可用頂點式二次函數通式來設拋物線,然后將A、B兩點坐標代入求解即可.(2)平行四邊形的面積為三角形OEA面積的2倍,因此可根據E點的橫坐標,用拋物線的解析式求出E點的縱坐標,那么E點縱坐標的絕對值即為△OAE的高,由此可根據三角形的面積公式得出△AOE的面積與x的函數關系式進而可得出S與x的函數關系式.(3)①將S=24代入S,x的函數關系式中求出x的值,即可得出E點的坐標和OE,OA的長;如果平行四邊形OEAF是菱形,則需滿足平行四邊形相鄰兩邊的長相等,據此可判斷出四邊形OEAF是否為菱形.②如果四邊形OEAF是正方形,那么三角形OEA應該是等腰直角三角形,即E點的坐標為(3,﹣3)將其代入拋物線的解析式中即可判斷出是否存在符合條件的E點.【詳解】(1)由拋物線的對稱軸是,可設解析式為.把A、B兩點坐標代入上式,得解之,得故拋物線解析式為,頂點為(2)∵點在拋物線上,位于第四象限,且坐標適合,∴y<0,即-y>0,-y表示點E到OA的距離.∵OA是的對角線,∴.因為拋物線與軸的兩個交點是(1,0)的(1,0),所以,自變量的取值范圍是1<<1.(3)①根據題意,當S=24時,即.化簡,得解之,得故所求的點E有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保證合同范本官網
- 丹巴客棧轉讓合同范本
- 優(yōu)化合同范本
- 海南植被垂直綠化施工方案
- 勞動合同保險合同范本
- 出入口智能停車場施工方案
- 1080個常用合同范本
- 第二單元第6課《網絡基礎》教學設計 2023-2024學年青島版(2019)初中信息技術第一冊
- 到家購房合同范本
- 利用資源合同范本
- 生物產品檢驗檢疫基礎知識單選題100道及答案
- 江蘇省中職《英語》學業(yè)水平考試備考試題集(含歷年真題)
- Unit 3 Environmental Protection Reading and Thinking 選擇性必修第三冊
- 2025年合伙型公司新合伙人加入協議
- 小學道德與法治課堂教學中提升學生核心素養(yǎng)策略
- 2025年安全員之C證(專職安全員)考試題庫
- 中水回用項目可行性研究報告
- 2025城市商鋪買賣合同書
- 基于主題式教學法的初級漢語綜合課《我的低碳生活》教學設計
- 微信公眾號運營及推廣合同
- 2025年春新北師大版物理八年級下冊課件 第六章 質量和密度 第一節(jié) 物體的質量及其測量
評論
0/150
提交評論