2025屆江蘇省南京市江寧區(qū)數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第1頁
2025屆江蘇省南京市江寧區(qū)數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第2頁
2025屆江蘇省南京市江寧區(qū)數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第3頁
2025屆江蘇省南京市江寧區(qū)數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第4頁
2025屆江蘇省南京市江寧區(qū)數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆江蘇省南京市江寧區(qū)數(shù)學(xué)高一下期末監(jiān)測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.一個(gè)正方體的體積是8,則這個(gè)正方體的內(nèi)切球的表面積是()A.8π B.6π C.4π D.π2.兩數(shù)1,25的等差中項(xiàng)為()A.1 B.13 C.5 D.3.已知,則點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.甲、乙兩名籃球運(yùn)動員最近五場比賽的得分如莖葉圖所示,則()A.甲的中位數(shù)和平均數(shù)都比乙高B.甲的中位數(shù)和平均數(shù)都比乙低C.甲的中位數(shù)比乙的中位數(shù)高,但平均數(shù)比乙的平均數(shù)低D.甲的中位數(shù)比乙的中位數(shù)低,但平均數(shù)比乙的平均數(shù)高5.如果角的終邊經(jīng)過點(diǎn),那么的值是()A. B. C. D.6.某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是()A. B. C. D.7.已知實(shí)數(shù)滿足,則的最大值為()A.8 B.2 C.4 D.68.已知圓柱的軸截面為正方形,且該圓柱的側(cè)面積為,則該圓柱的體積為A. B. C. D.9.?dāng)?shù)列滿足“對任意正整數(shù),都有”的充要條件是()A.是等差數(shù)列 B.與都是等差數(shù)列C.是等差數(shù)列 D.與都是等差數(shù)列且公差相等10.已知等差數(shù)列{an},若a2=10,a5=1,則{an}的前7項(xiàng)和為A.112 B.51 C.28 D.18二、填空題:本大題共6小題,每小題5分,共30分。11.在正方體中,是的中點(diǎn),連接、,則異面直線、所成角的正弦值為_______.12.在中角所對的邊分別為,若則___________13.已知向量,,若與共線,則實(shí)數(shù)________.14.已知中,,且,則面積的最大值為__________.15.據(jù)監(jiān)測,在海濱某城市附近的海面有一臺風(fēng),臺風(fēng)中心位于城市的南偏東30°方向,距離城市的海面處,并以的速度向北偏西60°方向移動(如圖示).如果臺風(fēng)侵襲范圍為圓形區(qū)域,半徑,臺風(fēng)移動的方向與速度不變,那么該城市受臺風(fēng)侵襲的時(shí)長為_______小時(shí).16.已知,各項(xiàng)均為正數(shù)的數(shù)列滿足,,若,則的值是.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知是圓的直徑,垂直圓所在的平面,是圓上任一點(diǎn).求證:平面⊥平面.18.在平面立角坐標(biāo)系中,過點(diǎn)的圓的圓心在軸上,且與過原點(diǎn)傾斜角為的直線相切.(1)求圓的標(biāo)準(zhǔn)方程;(2)點(diǎn)在直線上,過點(diǎn)作圓的切線、,切點(diǎn)分別為、,求經(jīng)過、、、四點(diǎn)的圓所過的定點(diǎn)的坐標(biāo).19.已知,(1)求;(2)若,求.20.已知三棱柱(如圖所示),底面為邊長為2的正三角形,側(cè)棱底面,,為的中點(diǎn).(1)求證:平面;(2)若為的中點(diǎn),求證:平面;(3)求三棱錐的體積.21.已知平面向量滿足:(1)求與的夾角;(2)求向量在向量上的投影.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】設(shè)正方體的棱長為a,則=8,∴a=2.而此正方體的內(nèi)切球直徑為2,∴S表=4π=4π.選C.2、B【解析】

直接利用等差中項(xiàng)的公式求解.【詳解】由題得兩數(shù)1,25的等差中項(xiàng)為.故選:B【點(diǎn)睛】本題主要考查等差中項(xiàng)的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.3、B【解析】∵,∴,,,∴,∴點(diǎn)在第二象限,故選B.點(diǎn)睛:本題主要考查了由三角函數(shù)值的符號判斷角的終邊位置,屬于基礎(chǔ)題;三角函數(shù)值符號記憶口訣記憶技巧:一全正、二正弦、三正切、四余弦(為正).即第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.4、B【解析】

分別計(jì)算出兩組數(shù)據(jù)的中位數(shù)和平均數(shù)即可得出選項(xiàng).【詳解】根據(jù)題意:甲的平均數(shù)為:,中位數(shù)為29,乙的平均數(shù)為:,中位數(shù)為30,所以甲的中位數(shù)和平均數(shù)都比乙低.故選:B【點(diǎn)睛】此題考查根據(jù)莖葉圖表示的數(shù)據(jù)分別辨析平均數(shù)和中位數(shù)的大小關(guān)系,分別計(jì)算求解即可得出答案.5、D【解析】

根據(jù)任意角的三角函數(shù)定義直接求解.【詳解】因?yàn)榻堑慕K邊經(jīng)過點(diǎn),所以,故選:D.【點(diǎn)睛】本題考查任意角的三角函數(shù)求值,屬于基礎(chǔ)題.6、D【解析】

由題意首先確定流程圖的功能,然后結(jié)合三角函數(shù)的性質(zhì)求解所要輸出的結(jié)果即開即可.【詳解】根據(jù)程序框圖知,該算法的目標(biāo)是計(jì)算和式:.又因?yàn)?,注意到,故?故選:D.【點(diǎn)睛】識別、運(yùn)行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu).(2)要識別、運(yùn)行程序框圖,理解框圖所解決的實(shí)際問題.(3)按照題目的要求完成解答并驗(yàn)證.7、D【解析】

設(shè)點(diǎn),根據(jù)條件知點(diǎn)均在單位圓上,由向量數(shù)量積或斜率知識,可發(fā)現(xiàn),對目標(biāo)式子進(jìn)行變形,發(fā)現(xiàn)其幾何意義為兩點(diǎn)到直線的距離之和有關(guān).【詳解】設(shè),,均在圓上,且,設(shè)的中點(diǎn)為,則點(diǎn)到原點(diǎn)的距離為,點(diǎn)在圓上,設(shè)到直線的距離分別為,,,.【點(diǎn)睛】利用數(shù)形結(jié)合思想,發(fā)現(xiàn)代數(shù)式的幾何意義,即構(gòu)造系數(shù),才能看出目標(biāo)式子的幾何意義為兩點(diǎn)到直線距離之和的倍.8、C【解析】

設(shè)圓柱的底面半徑,該圓柱的高為,利用側(cè)面積得到半徑,再計(jì)算體積.【詳解】設(shè)圓柱的底面半徑.因?yàn)閳A柱的軸截面為正方形,所以該圓柱的高為因?yàn)樵搱A柱的側(cè)面積為,所以,解得,故該圓柱的體積為.故答案選C【點(diǎn)睛】本題考查了圓柱的體積,意在考查學(xué)生的計(jì)算能力和空間想象能力.9、D【解析】

將變形為和,根據(jù)等差數(shù)列的定義即可得出與都是等差數(shù)列且公差相等,反過來,利用等差數(shù)列的定義得到,變形即可得出,從而得到“”的充要條件是“與都是等差數(shù)列且公差相等”.【詳解】由得:即數(shù)列與均為等差數(shù)列且公差相等,故“”是“與都是等差數(shù)列且公差相等”的充分條件反之,與都是等差數(shù)列且公差相等必有成立變形得:故“與都是等差數(shù)列且公差相等”是“”的必要條件綜上,“”的充要條件是“與都是等差數(shù)列且公差相等”故選:D.【點(diǎn)睛】本題主要考查了等差數(shù)列的判斷,考查了充分必要條件的判斷,屬于中等題.10、C【解析】

根據(jù)等差數(shù)列的通項(xiàng)公式和已知條件列出關(guān)于數(shù)列的首項(xiàng)和公差的方程組,解出數(shù)列的首項(xiàng)和公差,再根據(jù)等差數(shù)列的前項(xiàng)和可得解.【詳解】由等差數(shù)列的通項(xiàng)公式結(jié)合題意有:,解得:,則數(shù)列的前7項(xiàng)和為:,故選:C.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和前項(xiàng)公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

作出圖形,設(shè)正方體的棱長為,取的中點(diǎn),連接、,推導(dǎo)出,并證明出,可得出異面直線、所成的角為,并計(jì)算出、,可得出,進(jìn)而得解.【詳解】如下圖所示,設(shè)正方體的棱長為,取的中點(diǎn),連接、,為的中點(diǎn),則,,且,為的中點(diǎn),,,在正方體中,且,則四邊形為平行四邊形,,所以,異面直線、所成的角為,在中,,,.因此,異面直線、所成角的正弦值為.故答案為:.【點(diǎn)睛】本題考查異面直線所成角的正弦值的計(jì)算,考查計(jì)算能力,屬于中等題.12、【解析】,;由正弦定理,得,解得.考點(diǎn):正弦定理.13、【解析】

根據(jù)平面向量的共線定理與坐標(biāo)表示,列方程求出x的值.【詳解】向量(3,﹣1),(x,2),若與共線,則3×2﹣(﹣1)?x=0,解得x=﹣1.故答案為﹣1.【點(diǎn)睛】本題考查了平面向量的共線定理與坐標(biāo)表示的應(yīng)用問題,是基礎(chǔ)題.14、【解析】

先利用正弦定理求出c=2,分析得到當(dāng)點(diǎn)在的垂直平分線上時(shí),邊上的高最大,的面積最大,利用余弦定理求出,最后求面積的最大值.【詳解】由可得,由正弦定理,得,故,當(dāng)點(diǎn)在的垂直平分線上時(shí),邊上的高最大,的面積最大,此時(shí).由余弦定理知,,即,故面積的最大值為.故答案為【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.15、1【解析】

設(shè)臺風(fēng)移動M處的時(shí)間為th,則|PM|=20t,利用余弦定理求得AM,而該城市受臺風(fēng)侵襲等價(jià)于AM≤60,解此不等式可得.【詳解】如圖:設(shè)臺風(fēng)移動M處的時(shí)間為th,則|PM|=20t,依題意可得,在三角形APM中,由余弦定理可得:依題意該城市受臺風(fēng)侵襲等價(jià)于AM≤60,即AM2≤602,化簡得:,所以該城市受臺風(fēng)侵襲的時(shí)間為6﹣1=1小時(shí).故答案為:1.【點(diǎn)睛】本題考查了余弦定理的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.16、【解析】

由題意得,依次求得,,,,,∵,且>0,∴,依次求得======,∴+=+=.考點(diǎn):數(shù)列的遞推公式.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、證明見解析【解析】

先證直線平面,再證平面⊥平面.【詳解】證明:∵是圓的直徑,是圓上任一點(diǎn),,,平面,平面,,又,平面,又平面,平面⊥平面.【點(diǎn)睛】本題考查圓周角及線面垂直判定定理、面面垂直判定定理的應(yīng)用,考查垂直關(guān)系的簡單證明.18、(1)(2)經(jīng)過、、、四點(diǎn)的圓所過定點(diǎn)的坐標(biāo)為、【解析】

(1)先算出直線方程,根據(jù)相切和過點(diǎn),圓心在軸上聯(lián)立方程解得答案.(2)取線段的中點(diǎn),經(jīng)過、、、四點(diǎn)的圓是以線段為直徑的圓,設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,將圓方程表示出來,聯(lián)立方程組解得答案.【詳解】(1)由題意知,直線的方程為,整理為一般方程可得由圓的圓心在軸上,可設(shè)圓的方程為,由題意有,解得:,,故圓的標(biāo)準(zhǔn)方程為.(2)由圓的幾何性質(zhì)知,,,取線段的中點(diǎn),由直角三角形的性質(zhì)可知,故經(jīng)過、、、四點(diǎn)的圓是以線段為直徑的圓,設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為有則以為直徑的圓的方程為:,整理為可得.令,解得或,故經(jīng)過、、、四點(diǎn)的圓所過定點(diǎn)的坐標(biāo)為、.【點(diǎn)睛】本題考查了圓的方程,切線問題,四點(diǎn)共圓,定點(diǎn)問題,綜合性強(qiáng),技巧性高,意在考查學(xué)生的綜合應(yīng)用能力.19、(1)(2)【解析】

(1)兩邊平方可得,根據(jù)同角公式可得,;(2)根據(jù)兩角和的正切公式,計(jì)算可得結(jié)果.【詳解】(1)因?yàn)椋?,?因?yàn)?,所以,所以,?(2)因?yàn)椋?,所?【點(diǎn)睛】本題考查了兩角同角公式,二倍角正弦公式,兩角和的正切公式,屬于基礎(chǔ)題.20、(1)見解析(2)見解析(3)【解析】

(1)在平面找一條直線平行即可.(2)在平面內(nèi)找兩條相交直線垂直即可.(3)三棱錐即可【詳解】(1)連接,因?yàn)橹崩庵?,則為矩形,則為的中點(diǎn)連接,在中,為中位線,則平面(2)連接,底面底面底面①為正邊的中點(diǎn)②由①②及平面(3)因?yàn)槿〉闹悬c(diǎn),連接,則平面,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論