陜西省延安市實驗中學2025屆數(shù)學高一下期末考試模擬試題含解析_第1頁
陜西省延安市實驗中學2025屆數(shù)學高一下期末考試模擬試題含解析_第2頁
陜西省延安市實驗中學2025屆數(shù)學高一下期末考試模擬試題含解析_第3頁
陜西省延安市實驗中學2025屆數(shù)學高一下期末考試模擬試題含解析_第4頁
陜西省延安市實驗中學2025屆數(shù)學高一下期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省延安市實驗中學2025屆數(shù)學高一下期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.等比數(shù)列中,,,則公比()A.1 B.2 C.3 D.42.如圖,為了測量山坡上燈塔的高度,某人從高為的樓的底部處和樓頂處分別測得仰角為,,若山坡高為,則燈塔高度是()A. B. C. D.3.設變量、滿足約束條件,則目標函數(shù)的最大值為()A.2 B.3 C.4 D.94.已知,則比多了幾項()A.1 B. C. D.5.將函數(shù)的圖象向右平移個單位長度得到圖像,則下列判斷錯誤的是()A.函數(shù)的最小正周期是 B.圖像關于直線對稱C.函數(shù)在區(qū)間上單調遞減 D.圖像關于點對稱6.已知,,,,則()A. B.C. D.7.在中,若,則是()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形8.()A.0 B. C. D.19.從一批產品中取出兩件產品,事件“至少有一件是次品”的對立事件是A.至多有一件是次品 B.兩件都是次品C.只有一件是次品 D.兩件都不是次品10.已知,,下列不等式成立的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,且,則的最小值是______.12.已知數(shù)列中,且當時,則數(shù)列的前項和=__________.13.已知角的終邊上一點P落在直線上,則______.14.已知等比數(shù)列{an}為遞增數(shù)列,且,則數(shù)列{an}的通項公式an=______________.15.如圖,二面角等于,、是棱上兩點,、分別在半平面、內,,,且,則的長等于______.16.如圖所示,已知點,單位圓上半部分上的點滿足,則向量的坐標為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.經(jīng)觀測,某公路段在某時段內的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間有函數(shù)關系:.(1)在該時段內,當汽車的平均速度為多少時車流量最大?最大車流量為多少?(精確到0.01)(2)為保證在該時段內車流量至少為10千輛/小時,則汽車的平均速度應控制在什么范圍內?18.已知函數(shù).(1)求的最小正周期;(2)求在區(qū)間上的最大值和最小值.19.在梯形ABCD中,,,,.(1)求AC的長;(2)求梯形ABCD的高.20.已知數(shù)列滿足:.(1)若為等差數(shù)列,求的通項公式;(2)若單調遞增,求的取值范圍;21.如下圖,長方體ABCD-A1B1C1D1中,(1)當點E在AB上移動時,三棱錐D-D(2)當點E在AB上移動時,是否始終有D1

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

將與用首項和公比表示出來,解方程組即可.【詳解】因為,且,故:,且,解得:,即,故選:B.【點睛】本題考查求解等比數(shù)列的基本量,屬基礎題.2、B【解析】

過點作于點,過點作于點,在中由正弦定理求得,在中求得,從而求得燈塔的高度.【詳解】過點作于點,過點作于點,如圖所示,在中,由正弦定理得,,即,,在中,,又山高為,則燈塔的高度是.故選.【點睛】本題考查了解三角形的應用和正弦定理,考查了轉化思想,屬中檔題.3、D【解析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結論.【詳解】畫出滿足約束條件的可行域,如圖,畫出可行域,,,,平移直線,由圖可知,直線經(jīng)過時目標函數(shù)有最大值,的最大值為9.故選D.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.4、D【解析】

由寫出,比較兩個等式得多了幾項.【詳解】由題意,則,那么:,又比多了項.故選:D.【點睛】本題考查對函數(shù)的理解和帶值計算問題,屬于基礎題.5、C【解析】

根據(jù)三角函數(shù)的圖象平移關系求出的解析式,結合函數(shù)的單調性,對稱性分別進行判斷即可.【詳解】由題意,將函數(shù)的圖象向右平移個單位長度,可得,對于,函數(shù)的最小正周期為,所以該選項是正確的;對于,令,則為最大值,函數(shù)圖象關于直線,對稱是正確的;對于中,,則,,則函數(shù)在區(qū)間上先減后增,不正確;對于中,令,則,圖象關于點對稱是正確的,故選.【點睛】本題主要考查命題的真假判斷,涉及三角函數(shù)的單調性,對稱性,求出解析式是解決本題的關鍵.6、C【解析】

分別求出的值再帶入即可.【詳解】因為,所以因為,所以所以【點睛】本題考查兩角差的余弦公式.屬于基礎題.7、A【解析】

首先根據(jù)降冪公式把等式右邊降冪你,再根據(jù)把換成與的關系,進一步化簡即可.【詳解】,,,選A.【點睛】本題主要考查了二倍角,兩角和與差的余弦等,需熟記兩角和與差的正弦余弦等相關公式,以及特殊三角函數(shù)的值是解決本題的關鍵,屬于基礎題.8、C【解析】試題分析:考點:兩角和正弦公式9、D【解析】試題分析:根據(jù)對立事件的定義,至少有n個的對立事件是至多有n﹣1個,由事件A:“至少有一件次品”,我們易得結果.解:∵至少有n個的否定是至多有n﹣1個又∵事件A:“至少有一件次品”,∴事件A的對立事件為:至多有零件次品,即是兩件都不是次品.故答案為D.點評:本題考查的知識點是互斥事件和對立事件,互斥事件關鍵是要抓住不可能同時發(fā)生的要點,對立事件則要抓住有且只有一個發(fā)生,可以轉化命題的否定,集合的補集來進行求解.10、A【解析】

由作差法可判斷出A、B選項中不等式的正誤;由對數(shù)換底公式以及對數(shù)函數(shù)的單調性可判斷出C選項中不等式的正誤;利用指數(shù)函數(shù)的單調性可判斷出D選項中不等式的正誤.【詳解】對于A選項中的不等式,,,,,,,,A選項正確;對于B選項中的不等式,,,,,,,B選項錯誤;對于C選項中的不等式,,,,,,,即,C選項錯誤;對于D選項中的不等式,,函數(shù)是遞減函數(shù),又,所以,D選項錯誤.故選A.【點睛】本題考查不等式正誤的判斷,常見的比較大小的方法有:(1)比較法;(2)中間值法;(3)函數(shù)單調性法;(4)不等式的性質.在比較大小時,可以結合不等式的結構選擇合適的方法來比較,考查推理能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、8【解析】

利用的代換,將寫成,然后根據(jù)基本不等式求解最小值.【詳解】因為(即取等號),所以最小值為.【點睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.12、【解析】

先利用累乘法計算,再通過裂項求和計算.【詳解】,數(shù)列的前項和故答案為:【點睛】本題考查了累乘法,裂項求和,屬于數(shù)列的??碱}型.13、【解析】

由于角的終邊上一點P落在直線上,可得,根據(jù)二倍角公式以及三角函數(shù)基本關系,可得,代入,可求得結果.【詳解】因為角的終邊上一點P落在直線上,所以,.故答案為:【點睛】本題考查同角三角函數(shù)的基本關系,巧用“1”是解決本題的關鍵.14、【解析】設數(shù)列的首項為,公比為q,則,所以,由得解得,因為數(shù)列為遞增數(shù)列,所以,,所以考點定位:本題考查等比數(shù)列,意在考查考生對等比數(shù)列的通項公式的應用能力15、1【解析】

由已知中二面角α﹣l﹣β等于110°,A、B是棱l上兩點,AC、BD分別在半平面α、β內,AC⊥l,BD⊥l,且AB=AC=BD=1,由,結合向量數(shù)量積的運算,即可求出CD的長.【詳解】∵A、B是棱l上兩點,AC、BD分別在半平面α、β內,AC⊥l,BD⊥l,又∵二面角α﹣l﹣β的平面角θ等于110°,且AB=AC=BD=1,∴,60°,∴故答案為1.【點睛】本題考查的知識點是與二面角有關的立體幾何綜合題,其中利用,結合向量數(shù)量積的運算,是解答本題的關鍵.16、【解析】

設點,由和列方程組解出、的值,可得出向量的坐標.【詳解】設點的坐標為,則,由,得,解得,因此,,故答案為.【點睛】本題考查向量的坐標運算,解題時要將一些條件轉化為與向量坐標相關的等式,利用方程思想進行求解,考查運算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)v=40千米/小時,車流量最大,最大值為11.08千輛/小時(2)汽車的平均速度應控制在25≤v≤64這個范圍內【解析】

(1)將已知函數(shù)化簡,利用基本不等式求車流量y最大值;

(2)要使該時段內車流量至少為10千輛/小時,即使,解之即可得汽車的平均速度的控制范圍.【詳解】解:(1)=≤=≈11.08,當v=,即v=40千米/小時,車流量最大,最大值為11.08千輛/小時.(2)據(jù)題意有:,化簡得,即,所以,所以汽車的平均速度應控制在這個范圍內.【點睛】本題以已知函數(shù)關系式為載體,考查基本不等式的使用,考查解不等式,屬于基礎題.18、(1)(2)最大值為2,最小值為【解析】

(1)先將函數(shù)化簡為,根據(jù)公式求最小正周期.

(2)由,則,可求出函數(shù)的最值.【詳解】(1)所以的最小正周期為:.(2)由(1)有,則則當,即時,有最小值.當即,時,有最大值2.所以在區(qū)間上的最大值為2,最小值為.【點睛】本題考查三角函數(shù)化簡、求最小正周期和函數(shù)在閉區(qū)間上的最值,屬于中檔題.19、(1)(2).【解析】

(1)首先計算,再利用正弦定理計算得到答案.(2)中,由余弦定理得,作高,在直角三角形中利用三角函數(shù)得到高的大小.【詳解】(1)在中,,.由正弦定理得:,即.(2)在中,由余弦定理得:,整理得,解得.過點D作于E,則DE為梯形ABCD的高.,,.在直角中,.即梯形ABCD的高為.【點睛】本題考查了正弦定理,余弦定理,意在考查學生的計算能力和解決問題的能力.20、(1)(2)【解析】

(1)設出的通項公式,根據(jù)計算出對應的首項和公差,即可求解出通項公式;(2)根據(jù)條件得到,得到的奇數(shù)項成等差數(shù)列,的偶數(shù)項也成等差數(shù)列,根據(jù)單調遞增列出關于的不等式,求解出范圍即可.【詳解】(1)設,所以,所以,所以,所以;(2)因為,所以,所以,又因為,所以,當為奇數(shù)時,,當為偶數(shù)時,,因為單調遞增,所以,所以,所以.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論