版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆云南省昭通市大關(guān)縣民族中學(xué)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若,,且與夾角為,則()A.3 B. C.2 D.2.已知函數(shù),則()A.的最小正周期為,最大值為1 B.的最小正周期為,最大值為C.的最小正周期為,最大值為1 D.的最小正周期為,最大值為3.設(shè)等比數(shù)列的前項(xiàng)和為,若,公比,則的值為()A.15 B.16 C.30 D.314.“()”是“函數(shù)是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.從甲、乙、丙三人中,任選兩名代表,甲被選中的概率為()A. B. C. D.6.已知角α終邊上一點(diǎn)P(-2,3),則cos(A.32 B.-32 C.7.設(shè)向量,,則是的A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件8.在等差數(shù)列中,已知=2,=16,則為()A.8 B.128 C.28 D.149.已知函數(shù)和的定義域都是,則它們的圖像圍成的區(qū)域面積是()A. B. C. D.10.已知,,,,則下列等式一定成立的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,若方程的解集為,則__________.12.設(shè)奇函數(shù)的定義域?yàn)镽,且對(duì)任意實(shí)數(shù)滿足,若當(dāng)∈[0,1]時(shí),,則____.13.已知向量,,若向量與垂直,則__________.14.計(jì)算__________.15.在△ABC中,若∠A=120°,AB=5,BC=7,則△ABC的面積S=_____.16.?dāng)?shù)列的前項(xiàng)和為,若對(duì)任意,都有,則數(shù)列的前項(xiàng)和為________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.無窮數(shù)列滿足:為正整數(shù),且對(duì)任意正整數(shù),為前項(xiàng)、、、中等于的項(xiàng)的個(gè)數(shù).(1)若,求和的值;(2)已知命題存在正整數(shù),使得,判斷命題的真假并說明理由;(3)若對(duì)任意正整數(shù),都有恒成立,求的值.18.如圖,在平行四邊形中,,,,與的夾角為.(1)若,求、的值;(2)求的值;(3)求與的夾角的余弦值.19.設(shè)數(shù)列滿足,,,.s(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng);(2)求數(shù)列的通項(xiàng),并求數(shù)列的前項(xiàng)和;(3)若,且是單調(diào)遞增數(shù)列,求實(shí)數(shù)的取值范圍.20.已知向量,,函數(shù).(1)若,,求的值;(2)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.21.已知常數(shù)且,在數(shù)列中,首項(xiàng),是其前項(xiàng)和,且,.(1)設(shè),,證明數(shù)列是等比數(shù)列,并求出的通項(xiàng)公式;(2)設(shè),,證明數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;(3)若當(dāng)且僅當(dāng)時(shí),數(shù)列取到最小值,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
由題意利用兩個(gè)向量數(shù)量積的定義,求得的值,再根據(jù),計(jì)算求得結(jié)果.【詳解】由題意若,,且與夾角為,可得,.故選:B.【點(diǎn)睛】本題考查向量數(shù)量積的定義、向量的模的方法,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意不要錯(cuò)選成A答案.2、D【解析】
結(jié)合二倍角公式,對(duì)化簡(jiǎn),可求得函數(shù)的最小正周期和最大值.【詳解】由題意,,所以,當(dāng)時(shí),取得最大值為.由函數(shù)的最小正周期為,故的最小正周期為.故選:D.【點(diǎn)睛】本題考查三角函數(shù)周期性與最值,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.3、A【解析】
直接利用等比數(shù)列前n項(xiàng)和公式求.【詳解】由題得.故選A【點(diǎn)睛】本題主要考查等比數(shù)列求和,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.4、C【解析】若,則,函數(shù)為奇函數(shù),所以充分性成立;反之,若函數(shù)是奇函數(shù),則,即,因此必要性也是成立,所以“”是“函數(shù)是奇函數(shù)”充要條件,故選C.5、D【解析】
采用列舉法寫出總事件,再結(jié)合古典概型公式求解即可【詳解】被選出的情況具體有:甲乙、甲丙、乙丙,甲被選中有兩種,則故選:D6、A【解析】角α終邊上一點(diǎn)P(-2,3),所以cos(7、C【解析】
利用向量共線的性質(zhì)求得,由充分條件與必要條件的定義可得結(jié)論.【詳解】因?yàn)橄蛄?,,所以,即可以得到,不能推出,是“”的必要不充分條件,故選C.【點(diǎn)睛】本題主要考查向量共線的性質(zhì)、充分條件與必要條件的定義,屬于中檔題.利用向量的位置關(guān)系求參數(shù)是出題的熱點(diǎn),主要命題方式有兩個(gè):(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.8、D【解析】
將已知條件轉(zhuǎn)化為的形式列方程組,解方程組求得,進(jìn)而求得的值.【詳解】依題意,解得,故.故選:D.【點(diǎn)睛】本小題主要考查等差數(shù)列通項(xiàng)的基本量計(jì)算,屬于基礎(chǔ)題.9、C【解析】
由可得,所以的圖像是以原點(diǎn)為圓心,為半徑的圓的上半部分;再結(jié)合圖形求解.【詳解】由可得,作出兩個(gè)函數(shù)的圖像如下:則區(qū)域①的面積等于區(qū)域②的面積,所以他們的圖像圍成的區(qū)域面積為半圓的面積,即.故選C.【點(diǎn)睛】本題考查函數(shù)圖形的性質(zhì),關(guān)鍵在于的識(shí)別.10、B【解析】試題分析:相除得,又,所以.選B.【考點(diǎn)定位】指數(shù)運(yùn)算與對(duì)數(shù)運(yùn)算.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將利用輔助角公式化簡(jiǎn),可得出的值.【詳解】,其中,,因此,,故答案為.【點(diǎn)睛】本題考查利用輔助角公式化簡(jiǎn)計(jì)算,化簡(jiǎn)時(shí)要熟悉輔助角變形的基本步驟,考查運(yùn)算求解能力,屬于中等題.12、【解析】
根據(jù)得到周期,再利用周期以及奇函數(shù)將自變量轉(zhuǎn)變到給定區(qū)間計(jì)算函數(shù)值.【詳解】因?yàn)?,所以,所以,又因?yàn)?,所以,則,故,又因?yàn)槭瞧婧瘮?shù),所以,則.【點(diǎn)睛】(1)形如的函數(shù)是周期函數(shù),周期;(2)若要根據(jù)奇偶性求解分段函數(shù)的表達(dá)式,記住一個(gè)原則:“用未知表示已知”,也就是將自變量變形,利用已知范圍和解析式求解.13、【解析】,所以,解得.14、【解析】
采用分離常數(shù)法對(duì)所給極限式變形,可得到極限值.【詳解】.【點(diǎn)睛】本題考查分離常數(shù)法求極限,難度較易.15、【解析】
用余弦定理求出邊的值,再用面積公式求面積即可.【詳解】解:據(jù)題設(shè)條件由余弦定理得,即,即解得,故的面積,故答案為:.【點(diǎn)睛】本題主要考查余弦定理解三角形,考查三角形的面積公式,屬于基礎(chǔ)題.16、【解析】
根據(jù)數(shù)列的遞推公式,求得,再結(jié)合等差等比數(shù)列的前項(xiàng)和公式,即可求解,得到答案.【詳解】由題意,數(shù)列滿足,…①,…②由①-②,可得,即當(dāng)時(shí),,所以,則數(shù)列的前項(xiàng)和為.【點(diǎn)睛】本題主要考查了數(shù)列的遞推關(guān)系式的應(yīng)用,以及等差、等比數(shù)列的前項(xiàng)和的應(yīng)用,其中解答中熟練應(yīng)用熟練的遞推公式得到數(shù)列的通項(xiàng)公式,再結(jié)合等差、等比數(shù)列的前項(xiàng)和公式的準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)真命題,證明見解析;(3).【解析】
(1)根據(jù)題意直接寫出、、的值,可得出結(jié)果;(2)分和兩種情況討論,找出使得等式成立的正整數(shù),可得知命題為真命題;(3)先證明出“”是“存在,當(dāng)時(shí),恒有成立”的充要條件,由此可得出,然后利用定義得出,由此可得出的值.【詳解】(1)根據(jù)題意知,對(duì)任意正整數(shù),為前項(xiàng)、、、中等于的項(xiàng)的個(gè)數(shù),因此,,,;(2)真命題,證明如下:①當(dāng)時(shí),則,,,此時(shí),當(dāng)時(shí),;②當(dāng)時(shí),設(shè),則,,,此時(shí),當(dāng)時(shí),.綜上所述,命題為真命題;(3)先證明:“”是“存在,當(dāng)時(shí),恒有成立”的充要條件.假設(shè)存在,使得“存在,當(dāng)時(shí),恒有成立”.則數(shù)列的前項(xiàng)為,,,,,,后面的項(xiàng)順次為,,,,故對(duì)任意的,,對(duì)任意的,取,其中表示不超過的最大整數(shù),則,令,則,此時(shí),有,這與矛盾,故若存在,當(dāng)時(shí),恒有成立,必有;從而得證.另外:當(dāng)時(shí),數(shù)列為,故,則.【點(diǎn)睛】本題考查數(shù)列知識(shí)的應(yīng)用,涉及到命題真假的判斷,同時(shí)也考查了數(shù)列新定義問題,解題時(shí)要充分從題中數(shù)列的定義出發(fā),充分利用分類討論思想,綜合性強(qiáng),屬于難題.18、(1),;(2);(3).【解析】試題分析:(1)根據(jù)向量的運(yùn)算有,可知,由模長(zhǎng)即可求得、的值;(2)先求得向量,再根據(jù)向量的數(shù)量積及便可求得;(3)由前面的求解可得及,可利用求得向量夾角的余弦值.試題解析:(1)因?yàn)椋约?(2)由向量的運(yùn)算法則知,,所以.(3)因?yàn)榕c的夾角為,所以與的夾角為,又,所以..設(shè)與的夾角為,可得.所以與的夾角的余弦值為.考點(diǎn):向量的運(yùn)算.【思路點(diǎn)睛】本題主要考查向量的運(yùn)算及單位向量,平面任一向量都可用兩個(gè)不共線的單位向量來表示,其對(duì)應(yīng)坐標(biāo)就是沿單位向量方向上向量的模長(zhǎng);而對(duì)于向量的數(shù)量積,在得知模長(zhǎng)及夾角的情況下,可以用兩向量模長(zhǎng)與夾角余弦三者的乘積來計(jì)算,也可轉(zhuǎn)化為單位向量的數(shù)量積進(jìn)行求解;而向量夾角的余弦值則經(jīng)常通過向量的數(shù)量積與向量模長(zhǎng)的比值來求得.19、(1)證明見解析,;(2),;(3).【解析】
(1)利用等差數(shù)列的定義可證明出數(shù)列是等差數(shù)列,并確定該數(shù)列的首項(xiàng)和公差,即可得出數(shù)列的通項(xiàng);(2)利用累加法求出數(shù)列的通項(xiàng),然后利用裂項(xiàng)法求出數(shù)列的前項(xiàng)和;(3)求出,然后分為正奇數(shù)和正偶數(shù)兩種情況分類討論,結(jié)合可得出實(shí)數(shù)的取值范圍.【詳解】(1),等式兩邊同時(shí)減去得,,且,所以,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,因此,;(2),,,;(3).當(dāng)為正奇數(shù)時(shí),,,由,得,可得,由于數(shù)列為單調(diào)遞減數(shù)列,;當(dāng)為正偶數(shù)時(shí),,,由,得,可得,由于數(shù)列為單調(diào)遞增數(shù)列,.因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查利用等差數(shù)列的定義證明等差數(shù)列,同時(shí)也考查了累加法求通項(xiàng)、裂項(xiàng)求和法以及利用數(shù)列的單調(diào)性求參數(shù),充分利用單調(diào)性的定義來求解,考查運(yùn)算求解能力,屬于中等題.20、(1);(2)【解析】
(1)利用數(shù)量積公式結(jié)合二倍角公式,輔助角公式化簡(jiǎn)函數(shù)解析式,由,結(jié)合的范圍以及平方關(guān)系得出的值,由結(jié)合兩角差的余弦公式求解即可;(2)由整體法結(jié)合正弦函數(shù)的單調(diào)性得出該函數(shù)的單調(diào)增區(qū)間,則區(qū)間應(yīng)該包含在的一個(gè)增區(qū)間內(nèi),根據(jù)包含關(guān)系列出不等式組,求解即可得出正數(shù)的取值范圍.【詳解】(1)因?yàn)?,所以,?因?yàn)椋运?所以.(2).令,得,因?yàn)楹瘮?shù)在區(qū)間上是單調(diào)遞增函數(shù)所以存在,使得所以有,即因?yàn)?,所以又因?yàn)椋?,則,所以從而有,所以,所以.【點(diǎn)睛】本題主要考查了利用同角三角函數(shù)的基本關(guān)系,二倍角公式,兩角差的余弦公式化簡(jiǎn)求值以及根據(jù)正弦型函數(shù)的單調(diào)性求參數(shù)范圍,屬于較難題.21、(1)證明見解析,;(2)證明見解析,;(3).【解析】
(1)令,求出的值,再令,由,得出,將兩式相減得,再利用等比數(shù)列的定義證明為常數(shù),可得出數(shù)列為等比數(shù)列,并確定等比數(shù)列的首項(xiàng)和公比,可求出;(2)由題意得出,再利用等差數(shù)列的定義證明出數(shù)列為等差數(shù)列,確定等差數(shù)列的首項(xiàng)和公差,可求出數(shù)列的通項(xiàng)公式;(3)求出數(shù)列的通項(xiàng)公式,由數(shù)列在時(shí)取最小值,可得出當(dāng)時(shí),,當(dāng)時(shí),,再利用參變量分離法可得出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),有,即,;當(dāng)時(shí),由,可得,將上述兩式相減得,,,且,所以,數(shù)列是以,以為公比的等比數(shù)列,;(2)由(1)知,,由等差數(shù)列的定義
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育工作計(jì)劃范文合集五篇
- 員工安全生產(chǎn)承諾書
- 七年級(jí)語文上冊(cè) 全冊(cè)學(xué)案 人教新課標(biāo)版
- 2025年安全員C證理論考試1000題及答案
- 互聯(lián)網(wǎng)創(chuàng)業(yè)參考計(jì)劃書范文
- 第15課 國(guó)共合作與北伐戰(zhàn)爭(zhēng)(分層作業(yè))(解析版)
- 2024年空地出租詳細(xì)條款協(xié)議版B版
- 煤炭卸車作業(yè)合同
- 零售S店預(yù)算控制指南
- 2024建設(shè)工程合作協(xié)議
- 對(duì)外開放與國(guó)際合作概述
- 2024屆四川省成都市高中數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析
- 2023年青協(xié)活動(dòng)總結(jié)報(bào)告
- 提升供應(yīng)鏈效率:年度運(yùn)營(yíng)計(jì)劃
- 展覽館維修維護(hù)投標(biāo)方案
- 陳赫賈玲小品《歡喜密探》臺(tái)詞劇本
- 2023招聘專員個(gè)人年終總結(jié)
- 機(jī)房搬遷服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 腦出血入院病歷
- 國(guó)際郵輪產(chǎn)業(yè)及未來郵輪
- 小學(xué)第四季度意識(shí)形態(tài)分析研判報(bào)告
評(píng)論
0/150
提交評(píng)論