版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆湖北省荊、荊、襄、宜四地七??荚嚶?lián)盟高一下數(shù)學(xué)期末聯(lián)考試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是第二象限角,且,則的值為A. B. C. D.2.已知兩個等差數(shù)列,的前項和分別為,,若對任意的正整數(shù),都有,則等于()A.1 B. C. D.3.已知直線與互相垂直,垂足坐標為,且,則的最小值為()A.1 B.4 C.8 D.94.一個正方體被一個平面截去一部分后,剩余部分的三視圖如圖,則截去部分體積與原正方體體積的比值為()A. B. C. D.5.若圓與圓外切,則()A.21 B.19 C.9 D.-116.已知銳角△ABC的面積為,BC=4,CA=3,則角C的大小為()A.75° B.60° C.45° D.30°7.已知向量,,若向量與的夾角為,則實數(shù)()A. B. C. D.8.sin480°等于()A. B. C. D.9.將函數(shù)f(x)=sin(ωx+)(ω>0)的圖象向左平移個單位,所得到的函數(shù)圖象關(guān)于y軸對稱,則函數(shù)f(x)的最小正周期不可能是()A. B. C. D.10.從裝有兩個紅球和兩個黑球的口袋里任取兩個球,那么對立的兩個事件是()A.“至少有一個黑球”與“都是黑球”B.“至少有一個黑球”與“至少有一個紅球”C.“恰好有一個黑球”與“恰好有兩個黑球”D.“至少有一個黑球”與“都是紅球”二、填空題:本大題共6小題,每小題5分,共30分。11.兩圓交于點和,兩圓的圓心都在直線上,則____________;12.已知數(shù)列滿足:,,則數(shù)列的前項的和_______.13.已知數(shù)列滿足,若,則數(shù)列的通項______.14.已知,則15.在等差數(shù)列中,,,則.16.函數(shù)的最大值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某校從高一年級學(xué)生中隨機抽取60名學(xué)生,將期中考試的物理成績(均為整數(shù))分成六段:,,,…,后得到如圖頻率分布直方圖.(1)根據(jù)頻率分布直方圖,估計眾數(shù)和中位數(shù);(2)用分層抽樣的方法從的學(xué)生中抽取一個容量為5的樣本,從這五人中任選兩人參加補考,求這兩人的分數(shù)至少一人落在的概率.18.在正方體中.(1)求證:;(2)是中點時,求直線與面所成角.19.在中,D是線段AB上靠近B的一個三等分點,E是線段AC上靠近A的一個四等分點,,設(shè),.(1)用,表示;(2)設(shè)G是線段BC上一點,且使,求的值.20.已知函數(shù),為實數(shù).(1)若對任意,都有成立,求實數(shù)的值;(2)若,求函數(shù)的最小值.21.已知函數(shù)f(x)=sin22x-π4(1)求當t=1時,求fπ(2)求gt(3)當-12≤t≤1時,要使關(guān)于t的方程g(t)=
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:因為是第二象限角,且,所以.考點:兩角和的正切公式.2、B【解析】
利用等差數(shù)列的性質(zhì)將化為同底的,再化簡,將分子分母配湊成前n項和的形式,再利用題干條件,計算。【詳解】∵等差數(shù)列,的前項和分別為,,對任意的正整數(shù),都有,∴.故選B.【點睛】本題考查等差數(shù)列的性質(zhì)的應(yīng)用,屬于中檔題。3、B【解析】
代入垂足坐標,可得,然后根據(jù)基本不等式,可得結(jié)果.【詳解】由兩條直線的交點坐標為所以代入可得,即又,所以即當且僅當,即時,取等號故選:B【點睛】本題主要考查基本不等式,屬基礎(chǔ)題.4、C【解析】
根據(jù)三視圖還原出幾何體,得到是在正方體中,截去四面體,利用體積公式,求出其體積,然后得到答案.【詳解】根據(jù)三視圖還原出幾何體,如圖所述,得到是在正方體中,截去四面體設(shè)正方體的棱長為,則,故剩余幾何體的體積為,所以截去部分的體積與剩余部分的體積的比值為.故選:C.【點睛】本題考查了幾何體的三視圖求幾何體的體積;關(guān)鍵是正確還有幾何體,利用體積公式解答,屬于簡單題.5、C【解析】試題分析:因為,所以且圓的圓心為,半徑為,根據(jù)圓與圓外切的判定(圓心距離等于半徑和)可得,故選C.考點:圓與圓之間的外切關(guān)系與判斷6、B【解析】試題分析:由三角形的面積公式,得,即,解得,又因為三角形為銳角三角形,所以.考點:三角形的面積公式.7、B【解析】
根據(jù)坐標運算可求得與,從而得到與;利用向量夾角計算公式可構(gòu)造方程求得結(jié)果.【詳解】由題意得:,,,解得:本題正確選項:【點睛】本題考查利用向量數(shù)量積、模長和夾角求解參數(shù)值的問題,關(guān)鍵是能夠通過坐標運算表示出向量和模長,進而利用向量夾角公式構(gòu)造方程.8、D【解析】試題分析:因為,所以選D.考點:誘導(dǎo)公式,特殊角的三角函數(shù)值.9、D【解析】
利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,對稱性和周期性,求得函數(shù)的最小正周期為,由此得出結(jié)論.【詳解】解:將函數(shù)的圖象向左平移個單位,可得的圖象,根據(jù)所得到的函數(shù)圖象關(guān)于軸對稱,可得,即,.函數(shù)的最小正周期為,則函數(shù)的最小正周期不可能是,故選.【點睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,對稱性和周期性,屬于基礎(chǔ)題.10、D【解析】
寫出所有等可能事件,求出事件“至少有一個黑球”的概率為,事件“都是紅球”的概率為,兩事件的概率和為,從而得到兩事件對立.【詳解】記兩個黑球為,兩個紅球為,則任取兩球的所有等可能結(jié)果為:,記事件A為“至少有一個黑球”,事件為:“都是紅球”,則,因為,所以事件與事件互為對立事件.【點睛】本題考查古典概型和對立事件的判斷,利用兩事件的概率和為1是判斷對立事件的常用方法.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由圓的性質(zhì)可知,直線與直線垂直,,直線的斜率,,解得.故填:3.【點睛】本題考查了相交圓的幾何性質(zhì),和直線垂直的關(guān)系,考查數(shù)形結(jié)合的思想與計算能力,屬于基礎(chǔ)題.12、【解析】
通過令求出數(shù)列的前幾項,猜測是以為周期的周期數(shù)列,且每個周期內(nèi)都是以為首項,2為公比的等比數(shù)列.然后根據(jù)遞推式給予證明,最后由等比數(shù)列的前項和公式計算.【詳解】當時,,,,,,,當時,,,,,,,當時,,,,,,,猜測,是以為周期的周期數(shù)列,且每個周期內(nèi)都是以為首項,2為公比的等比數(shù)列.設(shè)中,即,∴,由于都是正整數(shù),所以,所以數(shù)列中第項開始大于3,前項是以為首項,2為公比的等比數(shù)列.,所以是以為周期的周期數(shù)列,所以.故答案為:.【點睛】本題考查等比數(shù)列的前項和,考查數(shù)列的周期性.解題關(guān)鍵是確定數(shù)列的周期性.方法采取的是從特殊到一般,猜想與證明.13、【解析】
直接利用數(shù)列的遞推關(guān)系式和疊加法求出結(jié)果.【詳解】因為,所以當時,.時也成立.所以數(shù)列的通項.【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應(yīng)用,疊加法在數(shù)列中的應(yīng)用,主要考察學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題.14、28【解析】試題分析:由等差數(shù)列的前n項和公式,把等價轉(zhuǎn)化為所以,然后求得a值.考點:極限及其運算15、8【解析】
設(shè)等差數(shù)列的公差為,則,所以,故答案為8.16、【解析】
設(shè),,,則,,可得,再根據(jù)正弦函數(shù)的定義域和值域,求得函數(shù)的最值.【詳解】解:函數(shù),設(shè),,則,,,,故當,即時,函數(shù),故故答案為:;【點睛】本題主要考查求函數(shù)的值域,正弦函數(shù)的定義域和值域,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)眾數(shù)為75,中位數(shù)為73.33;(2).【解析】
(1)由頻率分布直方圖能求出a=0.1.由此能求出眾數(shù)和中位數(shù);(2)用分層抽樣的方法從[40,60)的學(xué)生中抽取一個容量為5的樣本,從這五人中任選兩人參加補考,基本事件總數(shù),這兩人的分數(shù)至少一人落在[50,60)包含的基本事件個數(shù),由此能求出這兩人的分數(shù)至少一人落在[50,60)的概率.【詳解】(1)由頻率分布直方圖得:,
解得,
所以眾數(shù)為:,的頻率為,
的頻率為,
中位數(shù)為:.(2)用分層抽樣的方法從的學(xué)生中抽取一個容量為5的樣本,
的頻率為0.1,的頻率為0.15,
中抽到人,中抽取人,從這五人中任選兩人參加補考,
基本事件總數(shù),這兩人的分數(shù)至少一人落在包含的基本事件個數(shù),所以這兩人的分數(shù)至少一人落在的概率.【點睛】在求解有關(guān)古典概型概率的問題時,首先求出樣本空間中基本事件的總數(shù),其次求出概率事件中含有多少個基本事件,然后根據(jù)公式求得概率18、(1)見解析;(2).【解析】
(1)連接,證明平面,進而可得出;(2)連接、、,設(shè),過點在平面內(nèi)作,垂足為點,連接,設(shè),則角和均為直線與平面所成的角,從而可得出,即可求出所求角.【詳解】(1)如下圖所示,連接,在正方體中,平面,平面,,四邊形為正方形,,,平面,平面,;(2)連接、、,設(shè),過點在平面內(nèi)作,垂足為點,設(shè),設(shè)正方體的棱長為,在正方體中,且,所以,四邊形為平行四邊形,,平面,平面,在平面內(nèi),,,,,則、、、四點共面,為的中點,,且,平面,平面,,由勾股定理得,連接,設(shè),則直線與面所成角為,則,,由連比定理得,則,因此,直線與面所成角為.【點睛】本題考查線線垂直的證明,考查線面角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.19、(1)(2)【解析】
(1)依題意可得、,再根據(jù),計算可得;(2)設(shè)存在實數(shù),使得,由因為,所以存在實數(shù),使,再根據(jù)向量相等的充要條件得到方程組,解得即可;【詳解】解:(1)因為D是線段AB上靠近B的一個三等分點,所以.因為E是線段AC上靠近A的一個四等分點,所以,所以.因為,所以,則.又,.所以.(2)因為G是線段BC上一點,所以存在實數(shù),使得,則因為,所以存在實數(shù),使,即,整理得解得,故.【點睛】本題考查平面向量的線性運算及平面向量共線定理的應(yīng)用,屬于中檔題.20、(1);(2).【解析】
(1)根據(jù)二次函數(shù)的解析式寫出對稱軸即可;(2)根據(jù)對稱軸是否在定義域內(nèi)進行分類討論,由二次函數(shù)的圖象可分別得出函數(shù)的最小值.【詳解】(1)對任意,都有成立,則函數(shù)的對稱軸為,即,解得實數(shù)的值為.(2)二次函數(shù),開口向上,對稱軸為①若,即時,函數(shù)在上單調(diào)遞增,的最小值為;②若,即時,函數(shù)在上單調(diào)遞減,的最小值為;③若,即時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,的最小值為;綜上可得:【點睛】本題考查二次函數(shù)的圖象與性質(zhì),應(yīng)用了分類討論的思想,屬于中檔題.21、(1)-4(2)g(t)=t2【解析】
(1)直接代入計算得解;(2)先求出sin(2x-π4)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物流服務(wù)合同:跨國貨物的運輸與倉儲
- 2024年鐵藝大門定制及安裝勞務(wù)分包合同協(xié)議3篇
- 二零二五年度供熱改造工程供熱效果評估合同3篇
- 二零二五年化妝品線上線下聯(lián)銷合作協(xié)議3篇
- 2025年度消防工程消防圖紙審查合同標準3篇
- 2025年度木方生物質(zhì)能源項目采購合同2篇
- 二零二五年度北京市健身房裝修設(shè)計與施工合同2篇
- 二零二五年度安全生產(chǎn)風(fēng)險抵押金管理與退還合同范本3篇
- 二零二五年度醫(yī)藥健康專利申請授權(quán)合同3篇
- 2024年夢想同行:親子活動策劃合伙合同3篇
- 大型活動音響設(shè)備保養(yǎng)方案
- 安全生產(chǎn)專(兼)職管理人員職責(zé)
- 公檢法聯(lián)席會議制度
- 成都大學(xué)《Python數(shù)據(jù)分析》2022-2023學(xué)年期末試卷
- 保險理賠崗位招聘面試題與參考回答(某大型央企)2024年
- 上海市市轄區(qū)(2024年-2025年小學(xué)五年級語文)部編版期末考試(上學(xué)期)試卷及答案
- 第10課《我們不亂扔》(教學(xué)設(shè)計)-部編版道德與法治二年級上冊
- 期末試卷(試題)-2024-2025學(xué)年五年級上冊數(shù)學(xué)人教版
- 護理安全警示教育-新-
- 社會工作行政復(fù)習(xí)要點
- 2025屆浙江省樂清市知臨中學(xué)高一數(shù)學(xué)第一學(xué)期期末檢測試題含解析
評論
0/150
提交評論