版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆新疆石河子市石河子二中高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.向量,若,則的值是()A. B. C. D.2.圓x-12+y-3A.1 B.2 C.2 D.33.已知函數(shù)(,,)的部分圖象如圖所示,則()A. B. C. D.4.從數(shù)字0,1,2,3,4中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),則這個兩位數(shù)大于30的概率為()A. B. C. D.5.在△ABC中,D是邊BC的中點,則=A. B. C. D.6.已知,則的值為()A. B.1 C. D.7.函數(shù)的圖象與函數(shù)的圖象交點的個數(shù)為()A. B. C. D.8.在中,角A、B、C的對邊分別為a、b、c,若,則的形狀為()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形9.一個正方體內(nèi)接于一個球,過球心作一個截面,如圖所示,則截面的可能圖形是()A.①③④ B.②④ C.②③④ D.①②③10.設(shè)函數(shù)是定義為R的偶函數(shù),且對任意的,都有且當(dāng)時,,若在區(qū)間內(nèi)關(guān)于的方程恰好有3個不同的實數(shù)根,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)在內(nèi)的單調(diào)遞增區(qū)間為____.12.設(shè)點是角終邊上一點,若,則=____.13.函數(shù)的反函數(shù)為____________.14.設(shè),過定點A的動直線和過定點B的動直線交于點,則的最大值是.15.若,方程的解為______.16.給出以下四個結(jié)論:①平行于同一直線的兩條直線互相平行;②垂直于同一平面的兩個平面互相平行;③若,是兩個平面;,是異面直線;且,,,,則;④若三棱錐中,,,則點在平面內(nèi)的射影是的垂心;其中錯誤結(jié)論的序號為__________.(要求填上所有錯誤結(jié)論的序號)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.正方體的棱長為點分別是棱的中點(1)證明:四邊形是一個梯形:(2)求幾何體的表面積和體積18.如圖,四棱錐中,底面為矩形,面,為的中點.(1)證明:平面;(2)設(shè),,三棱錐的體積,求A到平面PBC的距離.19.在中,內(nèi)角所對的邊分別為.已知,.(Ⅰ)求的值;(Ⅱ)求的值.20.已知函數(shù).(1)判斷函數(shù)奇偶性;(2)討論函數(shù)的單調(diào)性;(3)比較與的大小.21.某中學(xué)的高二(1)班男同學(xué)有45名,女同學(xué)有15名,老師按照分層抽樣的方法組建了一個4人的課外興趣小組.(1)求課外興趣小組中男、女同學(xué)的人數(shù);(2)經(jīng)過一個月的學(xué)習(xí)、討論,這個興趣小組決定選出兩名同學(xué)做某項實驗,方法是先從小組里選出1名同學(xué)做實驗,該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選一名同學(xué)做實驗,求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;(3)試驗結(jié)束后,第一次做試驗的同學(xué)得到的試驗數(shù)據(jù)為68,70,71,72,74,第二次做試驗的同學(xué)得到的試驗數(shù)據(jù)為69,70,70,72,74,請問哪位同學(xué)的實驗更穩(wěn)定?并說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由平面向量的坐標(biāo)運算與共線定理,列方程求出λ的值.【詳解】向量=(-4,5),=(λ,1),則-=(-4-λ,4),又(-)∥,所以-4-λ-4λ=0,解得λ=-.故選C.【點睛】本題考查了平面向量的坐標(biāo)運算與共線定理應(yīng)用問題,是基礎(chǔ)題.2、C【解析】
先計算圓心到y(tǒng)軸的距離,再利用勾股定理得到弦長.【詳解】x-12+y-32=2圓心到y(tǒng)軸的距離d=1弦長l=2r故答案選C【點睛】本題考查了圓的弦長公式,意在考查學(xué)生的計算能力.3、D【解析】試題分析:由圖可知,,∴,又,∴,∴,又.∴.考點:由圖象確定函數(shù)解析式.4、B【解析】
直接利用古典概型的概率公式求解.【詳解】從數(shù)字0,1,2,3,4中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù)有10,12,13,14,20,21,23,24,30,31,32,34,40,41,42,43,共16個,其中大于30的有31,32,34,40,41,42,43,共7個,故所求概率為.故選B【點睛】本題主要考查古典概型的概率的計算,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.5、C【解析】分析:利用平面向量的減法法則及共線向量的性質(zhì)求解即可.詳解:因為是的中點,所以,所以,故選C.點睛:本題主要考查共線向量的性質(zhì),平面向量的減法法則,屬于簡單題.6、B【解析】
化為齊次分式,分子分母同除以,化弦為切,即可求解.【詳解】.故選:B.【點睛】本題考查已知三角函數(shù)值求值,通過齊次分式化弦為切,屬于基礎(chǔ)題.7、D【解析】
通過對兩函數(shù)的表達(dá)式進(jìn)行化簡,變成我們熟悉的函數(shù)模型,比如反比例、一次函數(shù)、指數(shù)、對數(shù)及三角函數(shù),看圖直接判斷【詳解】由,作圖如下:共6個交點,所以答案選擇D【點睛】函數(shù)圖象交點個數(shù)問題與函數(shù)零點、方程根可以作相應(yīng)等價,用函數(shù)零點及方程根本題不現(xiàn)實,所以我們更多去考慮分別作圖象,直接看交點個數(shù).8、D【解析】
由正弦定理化簡,得到,由此得到三角形是等腰或直角三角形,得到答案.【詳解】由題意知,,結(jié)合正弦定理,化簡可得,所以,則,所以,得或,所以三角形是等腰或直角三角形.故選D.【點睛】本題考查了正弦定理和余弦定理在解三角形中的應(yīng)用.在解三角形問題中經(jīng)常把邊的問題轉(zhuǎn)化成角的正弦或余弦函數(shù),利用三角函數(shù)的關(guān)系來解決問題,屬于基礎(chǔ)題.9、A【解析】
分別當(dāng)截面平行于正方體的一個面時,當(dāng)截面過正方體的兩條相交的體對角線時,當(dāng)截面既不過體對角線也不平行于任一側(cè)面時,進(jìn)行判定,即可求解.【詳解】由題意,當(dāng)截面平行于正方體的一個面時得③;當(dāng)截面過正方體的兩條相交的體對角線時得④;當(dāng)截面既不過正方體體對角線也不平行于任一側(cè)面時可能得①;無論如何都不能得②.故選A.【點睛】本題主要考查了正方體與球的組合體的截面問題,其中解答中熟記空間幾何體的結(jié)構(gòu)特征是解答此類問題的關(guān)鍵,著重考查了空間想象能力,以及推理能力,屬于基礎(chǔ)題.10、D【解析】∵對于任意的x∈R,都有f(x?2)=f(2+x),∴函數(shù)f(x)是一個周期函數(shù),且T=4.又∵當(dāng)x∈[?2,0]時,f(x)=?1,且函數(shù)f(x)是定義在R上的偶函數(shù),若在區(qū)間(?2,6]內(nèi)關(guān)于x的方程恰有3個不同的實數(shù)解,則函數(shù)y=f(x)與y=在區(qū)間(?2,6]上有三個不同的交點,如下圖所示:又f(?2)=f(2)=3,則對于函數(shù)y=,由題意可得,當(dāng)x=2時的函數(shù)值小于3,當(dāng)x=6時的函數(shù)值大于3,即<3,且>3,由此解得:<a<2,故答案為(,2).點睛:方程根的問題轉(zhuǎn)化為函數(shù)的交點,利用周期性,奇偶性畫出所研究區(qū)間的圖像限制關(guān)鍵點處的大小很容易得解二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將函數(shù)進(jìn)行化簡為,求出其單調(diào)增區(qū)間再結(jié)合,可得結(jié)論.【詳解】解:,遞增區(qū)間為:,可得,在范圍內(nèi)單調(diào)遞增區(qū)間為。故答案為:.【點睛】本題考查了正弦函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題。12、【解析】
根據(jù)任意角三角函數(shù)的定義,列方程求出m的值.【詳解】P(m,)是角終邊上的一點,∴r=;又,∴=,解得m=,,.故答案為.【點睛】本題考查了任意角三角函數(shù)的定義與應(yīng)用問題,屬于基礎(chǔ)題.13、【解析】
由原函數(shù)的解析式解出自變量x的解析式,再把x和y交換位置,即可得到結(jié)果.【詳解】解:記∴故反函數(shù)為:【點睛】本題考查函數(shù)與反函數(shù)的定義,求反函數(shù)的方法和步驟,注意反函數(shù)的定義域是原函數(shù)的值域.14、5【解析】試題分析:易得.設(shè),則消去得:,所以點P在以AB為直徑的圓上,,所以,.法二、因為兩直線的斜率互為負(fù)倒數(shù),所以,點P的軌跡是以AB為直徑的圓.以下同法一.【考點定位】1、直線與圓;2、重要不等式.15、【解析】
運用指數(shù)方程的解法,結(jié)合指數(shù)函數(shù)的值域,可得所求解.【詳解】由,即,因,解得,即.故答案:.【點睛】本題考查指數(shù)方程的解法,以及指數(shù)函數(shù)的值域,考查運算能力,屬于基礎(chǔ)題.16、②【解析】
③①可由課本推論知正確;②可舉反例;④可進(jìn)行證明.【詳解】命題①平行于同一直線的兩條直線互相平行,由課本推論知是正確的;②垂直于同一平面的兩個平面互相平行,是錯誤的,例如正方體的上底面,前面和右側(cè)面,是互相垂直的關(guān)系;③根據(jù)課本推論知結(jié)論正確;④若三棱錐中,,,則點在平面內(nèi)的射影是的垂心這一結(jié)論是正確的;作出B在底面的射影O,連結(jié)AO,DO,則,同理,,進(jìn)而得到O為三角形的垂心.
故答案為②【點睛】這個題目考查了命題真假的判斷,一般這類題目可以通過課本的性質(zhì)或者結(jié)論進(jìn)行判斷;也可以通過舉反例來解決這個問題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)表面積為,體積為【解析】
(1)在正方體中,根據(jù)分別是棱的中點,由中位線得到且,又由,根據(jù)公理4平行關(guān)系的傳遞性得證.(2)幾何體的表面積,上下底是直角三角形,三個側(cè)面,有兩個是全等的直角梯形,另一個是等腰梯形求解,體積按照棱臺體積公式求解.【詳解】(1)如圖所示:在正方體中,因為分別是棱的中點,所以且,又因為,所以且,所以四邊形是一個梯形.(2)幾何體的表面積為:.體積為:.【點睛】本題主要考查幾何體中的截面問題,還考查了空間想象,抽象概括,推理論證的能力,屬于中檔題.18、(1)證明見解析(2)到平面的距離為【解析】
試題分析:(1)連結(jié)BD、AC相交于O,連結(jié)OE,則PB∥OE,由此能證明PB∥平面ACE.(2)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出A到平面PBD的距離試題解析:(1)設(shè)BD交AC于點O,連結(jié)EO.因為ABCD為矩形,所以O(shè)為BD的中點.又E為PD的中點,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由題設(shè)易知,所以故,又所以到平面的距離為法2:等體積法由,可得.由題設(shè)易知,得BC假設(shè)到平面的距離為d,又因為PB=所以又因為(或),,所以考點:線面平行的判定及點到面的距離19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由題意結(jié)合正弦定理得到的比例關(guān)系,然后利用余弦定理可得的值(Ⅱ)利用二倍角公式首先求得的值,然后利用兩角和的正弦公式可得的值.【詳解】(Ⅰ)在中,由正弦定理得,又由,得,即.又因為,得到,.由余弦定理可得.(Ⅱ)由(Ⅰ)可得,從而,.故.【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和的正弦公式,二倍角的正弦與余弦公式,以及正弦定理?余弦定理等基礎(chǔ)知識.考查計算求解能力.20、(1)是偶函數(shù)(2)見解析(3)【解析】
(1)由奇偶函數(shù)的定義判斷;(2)由單調(diào)性的定義證明;(3)由于函數(shù)為偶函數(shù),因此只要比較與的大小,因此先確定與的大小,這就得到分類標(biāo)準(zhǔn).【詳解】(1)是偶函數(shù)(2)當(dāng)時,是增函數(shù);當(dāng)時,是減函數(shù);先證明當(dāng)時,是增函數(shù)證明:任取,且,則,且,,即:當(dāng)時,是增函數(shù)∵是偶函數(shù),∴當(dāng)時,是減函數(shù).(3)要比較與的大小,∵是偶函數(shù),∴只要比較與大小即可.當(dāng)時,即時,∵當(dāng)時,是增函數(shù),∴當(dāng)時,即當(dāng)時,∵當(dāng)時,是增函數(shù),∴【點睛】本題考查函數(shù)的奇偶性與單調(diào)性,掌握奇偶性與單調(diào)性的定義是解題基礎(chǔ).21、(1)男、女同學(xué)的人數(shù)分別為3人,1人;(2);(3)第二位同學(xué)的實驗更穩(wěn)定,理由見解析【解析】
(1)設(shè)有名男同學(xué),利用抽樣比列方程即可得解(2)列出基本事件總數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲服務(wù)承攬合同三篇
- 管道行業(yè)安全管理工作心得
- 2025年全球及中國丙二醛行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國頭發(fā)護(hù)理用神經(jīng)酰胺行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國DHA微囊粉行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國三維足底掃描系統(tǒng)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球電動跨式堆垛機(jī)行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國介孔二氧化硅微球行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國多相真空萃取機(jī)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球豆莢酒店行業(yè)調(diào)研及趨勢分析報告
- 2023-2024年員工三級安全培訓(xùn)考試題及參考答案(綜合題)
- 2024年人教版初中英語九年級全冊單元測評與答案
- 【渞法】學(xué)會自我保護(hù)教學(xué)設(shè)計 七年級道德與法治下冊(統(tǒng)編版2024)
- 2025-2030年中國融雪劑行業(yè)運行動態(tài)及發(fā)展前景預(yù)測報告
- 2025保安部年度工作計劃
- 2024年江蘇經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫
- 人居環(huán)境綜合治理項目項目背景及必要性分析
- 招標(biāo)采購基礎(chǔ)知識培訓(xùn)
- 電力系統(tǒng)分布式模型預(yù)測控制方法綜述與展望
- 2024年注冊建筑師-二級注冊建筑師考試近5年真題附答案
評論
0/150
提交評論