版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省慈溪市三山高級中學等六校2025屆數(shù)學高一下期末經(jīng)典試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若不等式的解集為空集,則實數(shù)a的取值范圍是()A. B. C. D.2.在數(shù)列中,,,則的值為:A.52 B.51 C.50 D.493.將一邊長為2的正方形沿對角線折起,若頂點落在同一個球面上,則該球的表面積為()A. B. C. D.4.在△ABC中,sinA:sinB:sinC=4:3:2,則cosA的值是()A. B. C. D.5.球是棱長為的正方體的內切球,則這個球的體積為()A. B. C. D.6.若關于的方程有且只有兩個不同的實數(shù)根,則實數(shù)的取值范圍是()A. B. C. D.7.已知不同的兩條直線m,n與不重合的兩平面,,下列說法正確的是()A.若,,則B.若,,則C.若,,則D.若,,則8.如圖所示,在一個長、寬、高分別為2、3、4的密封的長方體裝置中放一個單位正方體禮盒,現(xiàn)以點D為坐標原點,、、分別為x、y、z軸建立空間直角坐標系,則正確的是()A.的坐標為 B.的坐標為C.的長為 D.的長為9.在等比數(shù)列中,,,則()A.140 B.120 C.100 D.8010.的內角的對邊分別為,,,若的面積為,則A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖中,,,,M為AB邊上的動點,,D為垂足,則的最小值為______;12.設點是角終邊上一點,若,則=____.13.經(jīng)過點,且在兩坐標軸上的截距之和為2的直線的一般式方程為________.14.若,且,則=_______.15.若數(shù)列的前項和,滿足,則______.16.對任意實數(shù),不等式恒成立,則實數(shù)的取值范圍是____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點.(Ⅰ)求證:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.18.已知等比數(shù)列的各項為正數(shù),為其前項的和,,.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設數(shù)列是首項為,公差為的等差數(shù)列,求數(shù)列的通項公式及其前項的和.19.已知向量,,,.(Ⅰ)若四邊形是平行四邊形,求,的值;(Ⅱ)若為等腰直角三角形,且為直角,求,的值.20.已知向量,,且.(1)求向量在上的投影;(2)求.21.如圖,制圖工程師要用兩個同中心的邊長均為4的正方形合成一個八角形圖形,由對稱性,圖中8個三角形都是全等的三角形,設.(1)試用表示的面積;(2)求八角形所覆蓋面積的最大值,并指出此時的大小.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
對分兩種情況討論分析得解.【詳解】當時,不等式為,所以滿足題意;當時,,綜合得.故選:D【點睛】本題主要考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平,屬于基礎題.2、A【解析】
由,得到,進而得到數(shù)列首項為2,公差為的等差數(shù)列,利用等差數(shù)列的通項公式,即可求解,得到答案.【詳解】由題意,數(shù)列滿足,即,又由,所以數(shù)列首項為2,公差為的等差數(shù)列,所以,故選A.【點睛】本題主要考查了等差數(shù)列的定義,以及等差數(shù)列的通項公式的應用,其中解答中熟記等差數(shù)列的定義,以及等差數(shù)列的通項公式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、D【解析】
令正方形對角線與的交點為,如圖所示:由正方形中,,則,那么,將正方形沿對角線折起,如圖所示:則點為三棱錐的外接球的球心,且半徑為,故外接球的表面積為.故選:D【點睛】本題考查了多面體的外接球問題以及球的表面積公式,屬于基礎題.4、A【解析】
由正弦定理可得,再結合余弦定理求解即可.【詳解】解:因為在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故選:A.【點睛】本題考查了正弦定理及余弦定理,重點考查了運算能力,屬基礎題.5、A【解析】
棱長為的正方體的內切球的半徑,由此能求出其體積.【詳解】棱長為的正方體的內切球的半徑==1,體積.故選:A.【點睛】本題考查了正方體的內切球的性質和應用,屬于基礎題.6、B【解析】
方程化為,可轉化為半圓與直線有兩個不同交點,作圖后易得.【詳解】由得由題意半圓與直線有兩個不同交點,直線過定點,作出半圓與直線,如圖,當直線過時,,,當直線與半圓相切(位置)時,由,解得.所以的取值范圍是.故選:B.【點睛】本題考查方程根的個數(shù)問題,把問題轉化為直線與半圓有兩個交點后利用數(shù)形結合思想可以方便求解.7、C【解析】
依次判斷每個選項的正誤得到答案.【詳解】若,,則或A錯誤.若,,則或,B錯誤若,,則,正確若,,則或,D錯誤故答案選C【點睛】本題考查了線面關系,找出反例是解題的關鍵.8、D【解析】
根據(jù)坐標系寫出各點的坐標分析即可.【詳解】由所建坐標系可得:,,,.故選:D.【點睛】本題考查空間直角坐標系的應用,考查空間中距離的求法,考查計算能力,屬于基礎題.9、D【解析】
,計算出,然后將,得到答案.【詳解】等比數(shù)列中,又因為,所以,所以,故選D項.【點睛】本題考查等比數(shù)列的基本量計算,屬于簡單題.10、C【解析】分析:利用面積公式和余弦定理進行計算可得。詳解:由題可知所以由余弦定理所以故選C.點睛:本題主要考查解三角形,考查了三角形的面積公式和余弦定理。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
以為坐標原點建立平面直角坐標系,用坐標表示出的值,然后利用換元法求解出對應的最小值即可.【詳解】如圖所示,設,所以,根據(jù)條件可知:,所以,設,,,所以,所以,所以,所以當時,有最小值,最小值為.故答案為:.【點睛】本題考查利用坐標法以及換元法求解最值,著重考查邏輯推理和運算求解的能力,屬于較難題(1)利用換元法求解最值時注意,換元后新元的取值范圍;(2)三角函數(shù)中的一組“萬能公式”:,.12、【解析】
根據(jù)任意角三角函數(shù)的定義,列方程求出m的值.【詳解】P(m,)是角終邊上的一點,∴r=;又,∴=,解得m=,,.故答案為.【點睛】本題考查了任意角三角函數(shù)的定義與應用問題,屬于基礎題.13、【解析】
由題可知,直線在x上軸截距為-3,再利用截距式可直接求得直線方程【詳解】∵直線過(0,5),∴直線在y軸上的截距為5,又直線在兩坐標軸上的截距之和為2,∴直線在x軸上的截距為2-5=-3∴直線方程為,即5x-3y+15=0【點睛】直線方程有五種基本形式,在只知道橫縱截距的情況下,截距式是最快捷的一種方式14、【解析】
由的值及,可得的值,計算可得的值.【詳解】解:由,且,由,可得,故,故答案為:.【點睛】本題主要考查了同角三角函數(shù)的基本關系,熟練掌握其基本關系是解題的關鍵.15、【解析】
令,得出,令,由可計算出在時的表達式,然后就是否符合進行檢驗,由此可得出.【詳解】當時,;當時,則.也適合.綜上所述,.故答案為:.【點睛】本題考查利用求,一般利用來計算,但需要對進行檢驗,考查計算能力,屬于基礎題.16、【解析】
分別在和兩種情況下進行討論,當時,根據(jù)二次函數(shù)圖像可得不等式組,從而求得結果.【詳解】①當,即時,不等式為:,恒成立,則滿足題意②當,即時,不等式恒成立則需:解得:綜上所述:本題正確結果:【點睛】本題考查不等式恒成立問題的求解,易錯點是忽略不等式是否為一元二次不等式,造成丟根;處理一元二次不等式恒成立問題的關鍵是結合二次函數(shù)圖象來得到不等關系,屬于常考題型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析.【解析】
(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結論;(Ⅱ)由幾何體的空間結構特征首先證得線面垂直,然后利用面面垂直的判斷定理可得面面垂直;(Ⅲ)由題意,利用平行四邊形的性質和線面平行的判定定理即可找到滿足題意的點.【詳解】(Ⅰ)證明:因為平面,所以;因為底面是菱形,所以;因為,平面,所以平面.(Ⅱ)證明:因為底面是菱形且,所以為正三角形,所以,因為,所以;因為平面,平面,所以;因為所以平面,平面,所以平面平面.(Ⅲ)存在點為中點時,滿足平面;理由如下:分別取的中點,連接,在三角形中,且;在菱形中,為中點,所以且,所以且,即四邊形為平行四邊形,所以;又平面,平面,所以平面.【點睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理,立體幾何中的探索問題等知識,意在考查學生的轉化能力和計算求解能力.18、(Ⅰ)(Ⅱ),【解析】
(Ⅰ)設正項等比數(shù)列的公比為且,由已知列式求得首項與公比,則數(shù)列的通項公式可求;(Ⅱ)由已知求得,再由數(shù)列的分組求和即可.【詳解】(Ⅰ)由題意知,等比數(shù)列的公比,且,所以,解得,或(舍去),則所求數(shù)列的通項公式為.(Ⅱ)由題意得,故【點睛】本題主要考查等差數(shù)列與等比數(shù)列的通項公式及前項和公式的應用,同時考查了待定系數(shù)法求數(shù)列的通項公式和分組求和法求數(shù)列的和.19、(Ⅰ);(Ⅱ)或.【解析】
(Ⅰ)由得到x,y的方程組,解方程組即得x,y的值;(Ⅱ)由題得和,解方程組即得,的值.【詳解】(Ⅰ),,,,,由,,;(Ⅱ),,為直角,則,,又,,再由,解得:或.【點睛】本題主要考查平面向量的數(shù)量積運算和模的運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.20、(1)(2)40【解析】
(1)根據(jù)垂直得到,再計算投影得到答案.(2)展開直接計算得到答案.【詳解】(1)因為,由得.,.在上的投影為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版指標房屋銷售協(xié)議條款版
- 二手房交易中介協(xié)議合同范本(2024版)
- 2025年度銷售業(yè)務員兼職崗位員工激勵與績效改進合同2篇
- 二零二五年度別墅景觀綠化養(yǎng)護合同3篇
- 二零二五版國際會展中心物業(yè)全面服務與管理協(xié)議3篇
- 專業(yè)廣告代理服務協(xié)議(2024版)版A版
- 2024項目合作中間人傭金協(xié)議書
- 二零二五年度雞苗運輸時間優(yōu)化及效率提升合同3篇
- 二零二五版?zhèn)€人汽車銷售代理合同模板3篇
- 二零二五年度二手汽車租賃與環(huán)保節(jié)能服務合同3篇
- 農民工工資表格
- 【寒假預習】專題04 閱讀理解 20篇 集訓-2025年人教版(PEP)六年級英語下冊寒假提前學(含答案)
- 2024年突發(fā)事件新聞發(fā)布與輿論引導合同
- 地方政府信訪人員穩(wěn)控實施方案
- 小紅書推廣合同范例
- 商業(yè)咨詢報告范文模板
- 幼兒園籃球課培訓
- AQ 6111-2023個體防護裝備安全管理規(guī)范知識培訓
- 老干工作業(yè)務培訓
- 基底節(jié)腦出血護理查房
- 高中語文《勸學》課件三套
評論
0/150
提交評論