版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆四川省成都市經(jīng)開區(qū)實驗中學高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則角的終邊所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知平面向量,,,,且,則向量與向量的夾角為()A. B. C. D.3.直線與圓相交于M,N兩點,若.則的取值范圍是()A. B. C. D.4.設為等差數(shù)列的前n項和,若,則使成立的最小正整數(shù)n為()A.6 B.7 C.8 D.95.不等式的解集為()A. B. C. D.6.在ABC中,.則的取值范圍是()A.(0,] B.[,) C.(0,] D.[,)7.在中,是的中點,,,相交于點,若,,則()A.1 B.2 C.3 D.48.計算:的結果為()A.1 B.2 C.-1 D.-29.數(shù)列{an}的通項公式an=,若{an}前n項和為24,則n為().A.25 B.576 C.624 D.62510.已知函數(shù)f(x)=x,x≥0,|x2A.a(chǎn)<0 B.0<a<1 C.a(chǎn)>1 D.a(chǎn)≥1二、填空題:本大題共6小題,每小題5分,共30分。11.在等差數(shù)列中,,,則的值為_______.12.函數(shù)在區(qū)間上的值域為______.13.已知數(shù)列的首項,其前項和為,且,若單調(diào)遞增,則的取值范圍是__________.14.從集合A={-1,1,2}中隨機選取一個數(shù)記為k,從集合B={-2,1,2}中隨機選取一個數(shù)記為b,則直線y=kx+b不經(jīng)過第三象限的概率為_____.15.不等式的解集是______.16.在數(shù)列{}中,,則____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角的對邊分別為,已知(1)求;(2)若為銳角三角形,且邊,求面積的取值范圍.18.已知數(shù)列{an}和{bn}滿足a1=1,b1=0,,.(1)證明:{an+bn}是等比數(shù)列,{an–bn}是等差數(shù)列;(2)求{an}和{bn}的通項公式.19.如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明:;(2)求三棱錐的體積.20.某高中為了選拔學生參加“全國高中數(shù)學聯(lián)賽”,先在本校進行初賽(滿分150分),隨機抽取100名學生的成績作為樣本,并根據(jù)他們的初賽成績得到如圖所示的頻率分布直方圖.(1)求頻率分布直方圖中a的值;(2)根據(jù)頻率分布直方圖,估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù).21.已知曲線上的任意一點到兩定點、距離之和為,直線交曲線于兩點,為坐標原點.(1)求曲線的方程;(2)若不過點且不平行于坐標軸,記線段的中點為,求證:直線的斜率與的斜率的乘積為定值;(3)若直線過點,求面積的最大值,以及取最大值時直線的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由可知:則的終邊所在的象限為第四象限故選2、B【解析】
根據(jù)可得到:,由此求得;利用向量夾角的求解方法可求得結果.【詳解】由題意知:,則設向量與向量的夾角為則本題正確選項:【點睛】本題考查向量夾角的求解,關鍵是能夠通過平方運算將模長轉(zhuǎn)變?yōu)橄蛄康臄?shù)量積,從而得到向量的位置關系.3、A【解析】
可通過將弦長轉(zhuǎn)化為弦心距問題,結合點到直線距離公式和勾股定理進行求解【詳解】如圖所示,設弦中點為D,圓心C(3,2),弦心距,又,由勾股定理可得,答案選A【點睛】圓與直線的位置關系解題思路常從兩點入手:弦心距、勾股定理。處理過程中,直線需化成一般式4、C【解析】
利用等差數(shù)列下標和的性質(zhì)可確定,,,由此可確定最小正整數(shù).【詳解】且,使得成立的最小正整數(shù)故選:【點睛】本題考查等差數(shù)列性質(zhì)的應用問題,關鍵是能夠熟練應用等差數(shù)列下標和性質(zhì)化簡前項和公式.5、B【解析】
可將分式不等式轉(zhuǎn)化為一元二次不等式,注意分母不為零.【詳解】原不等式可化為,其解集為,故選B.【點睛】一般地,等價于,而則等價于,注意分式不等式轉(zhuǎn)化為整式不等式時分母不為零.6、C【解析】
試題分析:由于,根據(jù)正弦定理可知,故.又,則的范圍為.故本題正確答案為C.考點:三角形中正余弦定理的運用.7、D【解析】由題意知,所以,解得,所以,故選D.8、B【解析】
利用恒等變換公式化簡得的答案.【詳解】故答案選B【點睛】本題考查了三角恒等變換,意在考查學生的計算能力.9、C【解析】an==-(),前n項和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故選C.10、B【解析】
令g(x)=0得f(x)=a,再利用函數(shù)的圖像分析解答得到a的取值范圍.【詳解】令g(x)=0得f(x)=a,函數(shù)f(x)的圖像如圖所示,當直線y=a在x軸和直線x=1之間時,函數(shù)y=f(x)的圖像與直線y=a有四個零點,所以0<a<1.故選:B【點睛】本題主要考查函數(shù)的圖像和性質(zhì),考查函數(shù)的零點問題,意在考查學生對這些知識的理解掌握水平,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
設等差數(shù)列的公差為,根據(jù)題中條件建立、的方程組,求出、的值,即可求出的值.【詳解】設等差數(shù)列的公差為,所以,解得,因此,,故答案為:.【點睛】本題考查等差數(shù)列的項的計算,常利用首項和公差建立方程組,結合通項公式以及求和公式進行計算,考查方程思想,屬于基礎題.12、【解析】
由二倍角公式降冪,再由兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,結合正弦函數(shù)性質(zhì)可求得值域.【詳解】,,則,.故答案為:.【點睛】本題考查三角恒等變換(二倍角公式、兩角和的正弦公式),考查正弦函數(shù)的的單調(diào)性和最值.求解三角函數(shù)的性質(zhì)的性質(zhì)一般都需要用三角恒等變換化函數(shù)為一個角的一個三角函數(shù)形式,然后結合正弦函數(shù)的性質(zhì)得出結論.13、【解析】由可得:兩式相減得:兩式相減可得:數(shù)列,,...是以為公差的等差數(shù)列,數(shù)列,,...是以為公差的等差數(shù)列將代入及可得:將代入可得要使得,恒成立只需要即可解得則的取值范圍是點睛:本題考查了數(shù)列的遞推關系求通項,在含有的條件中,利用來求通項,本題利用減法運算求出數(shù)列隔一項為等差數(shù)列,結合和數(shù)列為增數(shù)列求出結果,本題需要利用條件遞推,有一點難度.14、【解析】由題意,基本事件總數(shù)為3×3=9,其中滿足直線y=kx+b不經(jīng)過第三象限的,即滿足有k=-1,b=1或k=-1,b=2兩種,故所求的概率為.15、【解析】
由題可得,分式化乘積得,進而求得解集.【詳解】由移項通分可得,即,解得,故解集為【點睛】本題考查分式不等式的解法,屬于基礎題.16、1【解析】
直接利用等比數(shù)列的通項公式得答案.【詳解】解:在等比數(shù)列中,由,公比,得.故答案為:1.【點睛】本題考查等比數(shù)列的通項公式,是基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用正弦定理邊化角,再利用和角的正弦公式化簡即得B的值;(2)先根據(jù)已知求出,再求面積的取值范圍.【詳解】解:(1),即可得,∵∴∵∴∴由,可得;(2)若為銳角三角形,且,由余弦定理可得,由三角形為銳角三角形,可得且解得,可得面積【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的取值范圍的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.18、(1)見解析;(2),.【解析】
(1)可通過題意中的以及對兩式進行相加和相減即可推導出數(shù)列是等比數(shù)列以及數(shù)列是等差數(shù)列;(2)可通過(1)中的結果推導出數(shù)列以及數(shù)列的通項公式,然后利用數(shù)列以及數(shù)列的通項公式即可得出結果.【詳解】(1)由題意可知,,,,所以,即,所以數(shù)列是首項為、公比為的等比數(shù)列,,因為,所以,數(shù)列是首項、公差為的等差數(shù)列,.(2)由(1)可知,,,所以,.【點睛】本題考查了數(shù)列的相關性質(zhì),主要考查了等差數(shù)列以及等比數(shù)列的相關證明,證明數(shù)列是等差數(shù)列或者等比數(shù)列一定要結合等差數(shù)列或者等比數(shù)列的定義,考查推理能力,考查化歸與轉(zhuǎn)化思想,是中檔題.19、(1)見解析;(2)【解析】
(1)以A為坐標原點,建立如圖所示的空間直角坐標系,求出BE,DC的方向向量,根據(jù)?=0,可得BE⊥DC;(2)由點為棱的中點,且底面,利用等體積法得.【詳解】(1)∵底面,,以為坐標原點,建立如圖所示的空間直角坐標系,∵,,點為棱的中點.∴(1,0,0),(2,2,0),(0,2,0),(0,0,2),(1,1,1)∴=(0,1,1),=(2,0,0),∵?=0,可得BE⊥DC;(2)由點為棱的中點,且底面,利用等體積法得.【點睛】本題考查了空間線面垂直的判定,利用了向量法,也考查了等體積法求體積,屬于中檔題.20、(1)(2)平均數(shù)、中位數(shù)、眾數(shù)依次為80,81,80【解析】
(1)利用頻率分布直方圖的性質(zhì),列出方程,即可求解;(2)由頻率分布直方圖,結合平均數(shù)、中位數(shù)、眾數(shù)的計算方法,即可求解.【詳解】(1)由頻率分布直方圖的性質(zhì),可得,解得.(2)由頻率分布直方圖,結合平均數(shù)、中位數(shù)、眾數(shù)的計算方法,可得平均數(shù)為:中位數(shù)為x,則,解得.根據(jù)眾數(shù)的概念,可得此頻率分布直方圖的眾數(shù)為:80,因此估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù)依次為80,81,80.【點睛】本題主要考查了頻率分布直方圖的性質(zhì),平均數(shù)、中位數(shù)和眾數(shù)的求解,其中解答中熟記頻率分布直方圖的相關知識是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.21、(1)(2)證明見解析;(3)或【解析】
(1)利用橢圓的定義可知曲線為的橢圓,直接寫出橢圓的方程.(2)設直線,設,聯(lián)立直線方程與橢圓方程,通過韋達定理求解KOM,然后推出直線OM的斜率與的斜率的乘積為定值.(3)設直線方程是與橢圓方程聯(lián)立,根據(jù)面積公式,代入根與系數(shù)的關系,利用換元和基本不等式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廚房員工服務協(xié)議書
- 招生咨詢合同范例
- 屋頂補漏工程合同書
- 2024年車輛損害賠償協(xié)議書范本
- 技術服務聘用協(xié)議范本
- 最標準版商鋪租賃合同
- 2024收養(yǎng)人員入院協(xié)議書樣本
- 倉房租賃協(xié)議
- 定制外教聘請協(xié)議書
- 商標設計協(xié)議書
- 釬探數(shù)據(jù)記錄
- 施工電梯安裝(拆卸)安全技術交底
- 北京應急指揮系統(tǒng)建設
- 部編版一年級語文上冊第1課《秋天》精品課件【最新】
- 以“政府績效與公眾信任”為主題撰寫一篇小論文6篇
- 高校教師培訓心得體會2000字3篇
- 電力專業(yè)標準化技術委員會管理細則
- 水泥用灰?guī)r礦礦產(chǎn)資源開發(fā)利用方案
- 老年友善醫(yī)院創(chuàng)建-老年人社會服務相關職責
- 高等天氣學講座---鋒生動力學和鋒面次級環(huán)流課件
- 液壓站更換作業(yè)指導書
評論
0/150
提交評論