版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省日照市高三第二次診斷性檢測新高考數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復數(shù)的共軛復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.43.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.4.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件5.數(shù)列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.46.已知函數(shù),則()A.2 B.3 C.4 D.57.已知集合,,則()A. B.C. D.8.命題:的否定為A. B.C. D.9.設向量,滿足,,,則的取值范圍是A. B.C. D.10.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.811.已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則()A. B.2 C. D.312.下邊程序框圖的算法源于我國古代的中國剩余定理.把運算“正整數(shù)除以正整數(shù)所得的余數(shù)是”記為“”,例如.執(zhí)行該程序框圖,則輸出的等于()A.16 B.17 C.18 D.19二、填空題:本題共4小題,每小題5分,共20分。13.已知邊長為的菱形中,,現(xiàn)沿對角線折起,使得二面角為,此時點,,,在同一個球面上,則該球的表面積為________.14.在平面直角坐標系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為____________.15.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點的軌跡方程為_________.16.過圓的圓心且與直線垂直的直線方程為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB=2BC,點Q為AE的中點.(1)求證:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.18.(12分)已知函數(shù)的最大值為2.(Ⅰ)求函數(shù)在上的單調遞減區(qū)間;(Ⅱ)中,,角所對的邊分別是,且,求的面積.19.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點,.(1)求線段的長.(2)若為線段上一點,且,求二面角的余弦值.20.(12分)設都是正數(shù),且,.求證:.21.(12分)設為實數(shù),在極坐標系中,已知圓()與直線相切,求的值.22.(10分)已知函數(shù).(1)討論函數(shù)的極值;(2)記關于的方程的兩根分別為,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
試題分析:由題意可得:.共軛復數(shù)為,故選A.考點:1.復數(shù)的除法運算;2.以及復平面上的點與復數(shù)的關系2、C【解析】
由二項式系數(shù)性質,的展開式中所有二項式系數(shù)和為計算.【詳解】的二項展開式中二項式系數(shù)和為,.故選:C.【點睛】本題考查二項式系數(shù)的性質,掌握二項式系數(shù)性質是解題關鍵.3、D【解析】
利用余弦定理角化邊整理可得結果.【詳解】由余弦定理得:,整理可得:,.故選:.【點睛】本題考查余弦定理邊角互化的應用,屬于基礎題.4、A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點睛】本題考查了線面和面面垂直的判定與性質定理、簡易邏輯的判定方法,考查了推理能力與計算能力.5、D【解析】
用去換中的n,得,相加即可找到數(shù)列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數(shù)列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.6、A【解析】
根據(jù)分段函數(shù)直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數(shù)計算,意在考查學生的計算能力.7、A【解析】
根據(jù)對數(shù)性質可知,再根據(jù)集合的交集運算即可求解.【詳解】∵,集合,∴由交集運算可得.故選:A.【點睛】本題考查由對數(shù)的性質比較大小,集合交集的簡單運算,屬于基礎題.8、C【解析】
命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結論否定,可知命題的否定為,故選C.9、B【解析】
由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.【點睛】本題考查向量的數(shù)量積,考查模長公式,準確計算是關鍵,是基礎題.10、B【解析】
建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數(shù)形結合的數(shù)學思想方法,屬于難題.11、B【解析】
過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質可構造方程求得,進而求得結果.【詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,,,,由拋物線定義知:,,,.由拋物線性質得:,解得:,.故選:.【點睛】本題考查拋物線定義與幾何性質的應用,關鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.12、B【解析】
由已知中的程序框圖可知,該程序的功能是利用循環(huán)結構計算并輸出變量的值,模擬程序的運行過程,代入四個選項進行驗證即可.【詳解】解:由程序框圖可知,輸出的數(shù)應為被3除余2,被5除余2的且大于10的最小整數(shù).若輸出,則不符合題意,排除;若輸出,則,符合題意.故選:B.【點睛】本題考查了程序框圖.當循環(huán)的次數(shù)不多,或有規(guī)律時,常采用循環(huán)模擬或代入選項驗證的方法進行解答.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分別取,的中點,,連接,由圖形的對稱性可知球心必在的延長線上,設球心為,半徑為,,由勾股定理可得、,再根據(jù)球的面積公式計算可得;【詳解】如圖,分別取,的中點,,連接,則易得,,,,由圖形的對稱性可知球心必在的延長線上,設球心為,半徑為,,可得,解得,.故該球的表面積為.故答案為:【點睛】本題考查多面體的外接球的計算,屬于中檔題.14、【解析】
利用即可建立關于的方程.【詳解】設雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,,由已知,,即,所以,離心率.故答案為:【點睛】本題考查求雙曲線的離心率,做此類題的關鍵是建立的方程或不等式,是一道容易題.15、【解析】
根據(jù)圓的性質可知在線段的垂直平分線上,由此得到,同理可得,由對數(shù)運算法則可知,從而化簡得到,由此確定軌跡方程.【詳解】,,和的中點坐標為,且在線段的垂直平分線上,,即,同理可得:,,,點的軌跡方程為.故答案為:.【點睛】本題考查動點軌跡方程的求解問題,關鍵是能夠利用圓的性質和對數(shù)運算法則構造出滿足的方程,由此得到結果.16、【解析】
根據(jù)與已知直線垂直關系,設出所求直線方程,將已知圓圓心坐標代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點睛】本題考查圓的方程、直線方程求法,注意直線垂直關系的靈活應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)連接交于點,連接,通過證明,證得平面.(2)建立空間直角坐標系,利用直線的方向向量和平面的法向量,計算出線面角的正弦值.【詳解】(1)證明:連接交于點,連接,因為四邊形為正方形,所以點為的中點,又因為為的中點,所以;平面平面,平面.(2)解:,設,則,在中,,由余弦定理得:,.又,平面..平面.如圖建立的空間直角坐標系.在等腰梯形中,可得.則.那么設平面的法向量為,則有,即,取,得.設與平面所成的角為,則.所以與平面所成角的正弦值為.【點睛】本小題主要考查線面平行的證明,考查線面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(Ⅰ)(Ⅱ)【解析】
(1)由題意,f(x)的最大值為所以而m>0,于是m=,f(x)=2sin(x+).由正弦函數(shù)的單調性可得x滿足即所以f(x)在[0,π]上的單調遞減區(qū)間為(2)設△ABC的外接圓半徑為R,由題意,得化簡得sinA+sinB=2sinAsinB.由正弦定理,得①由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0②將①式代入②,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故19、(1)的長為4(2)【解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系,設,根據(jù)向量垂直關系計算得到答案.(2)計算平面的法向量為,為平面的一個法向量,再計算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系.設,則,所以.,因為,所以,即,解得,所以的長為4.(2)因為,所以,又,故.設為平面的法向量,則即取,解得,所以為平面的一個法向量.顯然,為平面的一個法向量,則,據(jù)圖可知,二面角的余弦值為.【點睛】本題考查了立體幾何中的線段長度,二面角,意在考查學生的計算能力和空間想象能力.20、證明見解析【解析】
利用比較法進行證明:把代數(shù)式展開、作差、化簡可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因為,,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點睛】本題考查利用比較法證明不等式;考查學生的邏輯推理能力和運算求解能力;把差變形為因式乘積的形式是證明本題的關鍵;屬于中檔題。21、【解析】
將圓和直線化成普通方程.再根據(jù)相切,圓心到直線的距離等于半徑,列等式方程,解方程即可.【詳解】解:將圓化成普通方程為,整理得.將直線化成普通方程為.因為相切,所以圓心到直線的距離等于半徑,即解得.【點睛】本題考查極坐標方程與普通方程的互化,考查直線與圓的位置關系,是基礎題.22、(1)見解析;(2)見解析【解析】
(1)對函數(shù)求導,對參數(shù)討論,得函數(shù)單調區(qū)間,進而求出極值;(2)是方程的兩根,代入方程,化簡換元,構造新函數(shù)利用函數(shù)單調性求最值可解.【詳解】(1)依題意,;若,則,則函數(shù)在上單調遞增,此時函數(shù)既無極大值,也無極小值;若,則,令,解得,故當時,,單調遞增;當時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年魚塘承包與漁業(yè)科普教育合同范本3篇
- 二零二五年度農產(chǎn)品檢測業(yè)務合同樣本3篇
- 2025版電梯維修保養(yǎng)市場調研與分析合同3篇
- 二零二五年度MyOracleSupport技術支持與故障排除服務合同
- 2025年度杭州新能源電動車銷售合同2篇
- 2025年度教育培訓機構首付分期合作協(xié)議書3篇
- 2024年診所專業(yè)護士團隊聘用及協(xié)作服務合同3篇
- 殘聯(lián)工作計劃15篇
- 2025年度企業(yè)辦公用品智能化管理平臺建設合同2篇
- 二零二五年度休閑農業(yè)用地租賃合同范本3篇
- 微信小程序云開發(fā)(赤峰應用技術職業(yè)學院)知到智慧樹答案
- 2024-2025學年上學期福建高二物理期末卷2
- 2024-2025年第一學期小學德育工作總結:點亮德育燈塔引領小學生全面成長的逐夢之旅
- 2024四川阿壩州事業(yè)單位和州直機關招聘691人歷年管理單位遴選500模擬題附帶答案詳解
- 麻醉科工作計劃
- 2024年新進員工試用期考核標準3篇
- 《英美文化概況》課件
- 四川省2023年普通高中學業(yè)水平考試物理試卷 含解析
- 2024-2025學年人教版八年級上學期數(shù)學期末復習試題(含答案)
- 2024年醫(yī)院康復科年度工作總結(4篇)
- 五金耗材材料項目投標方案(技術方案)
評論
0/150
提交評論