2025屆內(nèi)蒙古包頭市稀土高新區(qū)二中高一下數(shù)學期末綜合測試試題含解析_第1頁
2025屆內(nèi)蒙古包頭市稀土高新區(qū)二中高一下數(shù)學期末綜合測試試題含解析_第2頁
2025屆內(nèi)蒙古包頭市稀土高新區(qū)二中高一下數(shù)學期末綜合測試試題含解析_第3頁
2025屆內(nèi)蒙古包頭市稀土高新區(qū)二中高一下數(shù)學期末綜合測試試題含解析_第4頁
2025屆內(nèi)蒙古包頭市稀土高新區(qū)二中高一下數(shù)學期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆內(nèi)蒙古包頭市稀土高新區(qū)二中高一下數(shù)學期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知a>0,x,y滿足約束條件,若z=2x+y的最小值為1,則a=A. B. C.1 D.22.已知函數(shù),若使得在區(qū)間上為增函數(shù)的整數(shù)有且僅有一個,則實數(shù)的取值范圍是()A. B. C. D.3.已知三角形ABC,如果,則該三角形形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上選項均有可能4.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.5.如圖,在正方體中,,分別是,中點,則異面直線與所成的角是()A. B. C. D.6.在中,角的對邊分別是,已知,則()A. B. C. D.或7.盒中裝有除顏色以外,形狀大小完全相同的3個紅球、2個白球、1個黑球,從中任取2個球,則互斥而不對立的兩個事件是()A.至少有一個白球;至少有一個紅球 B.至少有一個白球;紅、黑球各一個C.恰有一個白球:一個白球一個黑球 D.至少有一個白球;都是白球8.若平面和直線,滿足,,則與的位置關(guān)系一定是()A.相交 B.平行 C.異面 D.相交或異面9.若數(shù)列,若,則在下列數(shù)列中,可取遍數(shù)列前項值的數(shù)列為()A. B. C. D.10.在銳角三角形中,,,分別為內(nèi)角,,的對邊,已知,,,則的面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.計算__________.12.某學校高一年級舉行選課培訓活動,共有1024名學生、家長、老師參加,其中家長256人.學校按學生、家長、老師分層抽樣,從中抽取64人,進行某問卷調(diào)查,則抽到的家長有___人13.函數(shù)且的圖象恒過定點A,若點A在直線上(其中m,n>0),則的最小值等于__________.14.不等式的解集是_________________15.已知函數(shù)f(n)=n2cos(nπ),且an=f(n)+f(n+1),則a1+a2+a3+…+a100=_______16.如圖,在等腰直角三角形ABC中,,,以AB為直徑在外作半圓O,P是半圓弧AB上的動點,點Q在斜邊BC上,若,則的取值范圍是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某科研小組對冬季晝夜溫差大小與某反季節(jié)作物種子發(fā)芽多少之間的關(guān)系進行分析,分別記錄了每天晝夜溫差和每100顆種子的發(fā)芽數(shù),其中5天的數(shù)據(jù)如下,該小組的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,再用方程對其余的2組數(shù)據(jù)進行檢驗.日期第1天第2天第3天第4天第5天溫度(℃)101113128發(fā)芽數(shù)(顆)2326322616(1)求余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;(2)若選取的是第2、3、4天的數(shù)據(jù),求關(guān)于的線性回歸方程;(3)若由線性回歸方程得到的估計數(shù)據(jù)與2組檢驗數(shù)據(jù)的誤差均不超過1顆,則認為得到的線性回歸方程是可靠的,請問(2)中所得的線性回歸方程是否可靠?(參考公式;線性回歸方程中系數(shù)計算公式:,,其中、表示樣本的平均值)18.已知函數(shù),.(1)求的最小正周期;(2)求在閉區(qū)間上的最大值和最小值.19.數(shù)列中,,(為常數(shù),1,2,3,…),且.(1)求c的值;(2)求證:①;②;(3)比較++…+與的大小,并加以證明.20.已知數(shù)列{an}中,a1=1且an﹣an﹣1=3×()n﹣2(n≥2,n∈N*).(1)求數(shù)列{an}的通項公式:(2)若對任意的n∈N*,不等式1≤man≤5恒成立,求實數(shù)m的取值范圍.21.已知數(shù)列的前項和為,滿足,,數(shù)列滿足,,且.(1)求數(shù)列的通項公式;(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項公式;(3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

畫出不等式組表示的平面區(qū)域如圖所示:當目標函數(shù)z=2x+y表示的直線經(jīng)過點A時,取得最小值,而點A的坐標為(1,),所以,解得,故選B.【考點定位】本小題考查線性規(guī)劃的基礎知識,難度不大,線性規(guī)劃知識在高考中一般以小題的形式出現(xiàn),是高考的重點內(nèi)容之一,幾乎年年必考.2、A【解析】

根據(jù)在區(qū)間上為增函數(shù)的整數(shù)有且僅有一個,結(jié)合正弦函數(shù)的單調(diào)性,即可求得答案.【詳解】,使得在區(qū)間上為增函數(shù)可得當時,滿足整數(shù)至少有,舍去當時,,要使整數(shù)有且僅有一個,須,解得:實數(shù)的取值范圍是.故選:A.【點睛】本題主要考查了根據(jù)三角函數(shù)在某區(qū)間上單調(diào)求參數(shù)值,解題關(guān)鍵是掌握正弦型三角函數(shù)單調(diào)區(qū)間的解法和結(jié)合三角函數(shù)圖象求參數(shù)范圍,考查了分析能力和計算能力,屬于難題.3、B【解析】

由正弦定理化簡已知可得:,由余弦定理可得,可得為鈍角,即三角形的形狀為鈍角三角形.【詳解】由正弦定理,,可得,化簡得,由余弦定理可得:,又,為鈍角,即三角形為鈍角三角形.故選:B.【點睛】本題主要考查了正弦定理,余弦定理在解三角形中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.4、D【解析】

由幾何體的三視圖得該幾何體是一個底面半徑,高的扣在平面上的半圓柱,由此能求出該幾何體的體積【詳解】由幾何體的三視圖得:

該幾何體是一個底面半徑,高的放在平面上的半圓柱,如圖,

故該幾何體的體積為:故選:D【點睛】本題考查幾何體的體積的求法,考查幾何體的三視圖等基礎知識,考查推理能力與計算能力,是中檔題.5、D【解析】

如圖,平移直線到,則直線與直線所成角,由于點都是中點,所以,則,而,所以,即,應選答案D.6、B【解析】

由已知知,所以B<A=,由正弦定理得,==,所以,故選B考點:正弦定理7、B【解析】

根據(jù)對立事件和互斥事件的定義,對每個選項進行逐一分析即可.【詳解】從6個小球中任取2個小球,共有15個基本事件,因為存在事件:取出的兩個球為1個白球和1個紅球,故至少有一個白球;至少有一個紅球,這兩個事件不互斥,故A錯誤;因為存在事件:取出的兩個球為1個白球和1個黑球,故恰有一個白球:一個白球一個黑球,這兩個事件不互斥,故C錯誤;因為存在事件:取出的兩個球都是白球,故至少有一個白球;都是白球,這兩個事件不互斥,故D錯誤;因為至少有一個白球,包括:1個白球和1個紅球,1個白球和1個黑球,2個白球這3個基本事件;紅、黑球各一個只包括1個紅球1個白球這1個基本事件,故兩個事件互斥,因還有其它基本事件未包括,故不對立.故B正確.故選:B.【點睛】本題考查互斥事件和對立事件的辨析,屬基礎題.8、D【解析】

當時與相交,當時與異面.【詳解】當時與相交,當時與異面.故答案為D【點睛】本題考查了直線的位置關(guān)系,屬于基礎題型.9、D【解析】

推導出是以6為周期的周期數(shù)列,從而是可取遍數(shù)列前6項值的數(shù)列.【詳解】數(shù)列,,,,,,,,,是以6為周期的周期數(shù)列,是可取遍數(shù)列前6項值的數(shù)列.故選:D.【點睛】本題考查數(shù)列的周期性與三角函數(shù)知識的交會,考查基本運算求解能力,求解時注意函數(shù)與方程思想的應用.10、D【解析】由結(jié)合題意可得:,故,△ABC為銳角三角形,則,由題意結(jié)合三角函數(shù)的性質(zhì)有:,則:,即:,則,由正弦定理有:,故.本題選擇D選項.點睛:在解決三角形問題中,求解角度值一般應用余弦定理,因為余弦定理在內(nèi)具有單調(diào)性,求解面積常用面積公式,因為公式中既有邊又有角,容易和正弦定理、余弦定理聯(lián)系起來.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

采用分離常數(shù)法對所給極限式變形,可得到極限值.【詳解】.【點睛】本題考查分離常數(shù)法求極限,難度較易.12、16【解析】

利用分層抽樣的性質(zhì),直接計算,即可求得,得到答案.【詳解】由題意,可知共有1024名學生、家長、老師參加,其中家長256人,通過分層抽樣從中抽取64人,進行某問卷調(diào)查,則抽到的家長人數(shù)為人.故答案為16【點睛】本題主要考查了分層抽樣的應用,其中解答中熟記分層抽樣的概念和性質(zhì),準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.13、1【解析】

由題意可得定點,,把要求的式子化為,利用基本不等式求得結(jié)果.【詳解】解:且令解得,則即函數(shù)過定點,又點在直線上,,則,當且僅當時,等號成立,故答案為:1.【點睛】本題考查基本不等式的應用,函數(shù)圖象過定點問題,把要求的式子化為,是解題的關(guān)鍵,屬于基礎題.14、【解析】

可先求出一元二次方程的兩根,即可得到不等式的解集.【詳解】由于的兩根分別為:,,因此不等式的解集是.【點睛】本題主要考查一元二次不等式的求解,難度不大.15、-1【解析】

分n為偶數(shù)和奇數(shù)求得數(shù)列的奇數(shù)項和偶數(shù)項均為等差數(shù)列,然后利用分組求和得答案.【詳解】若n為偶數(shù),則an=f(n)+f(n+1)=n2﹣(n+1)2=﹣(2n+1),偶數(shù)項為首項為a2=﹣5,公差為﹣4的等差數(shù)列;若n為奇數(shù),則an=f(n)+f(n+1)=﹣n2+(n+1)2=2n+1,奇數(shù)項為首項為a1=3,公差為4的等差數(shù)列.∴a1+a2+a3+…+a1=(a1+a3+…+a99)+(a2+a4+…+a1)1.故答案為:1.【點睛】本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓練了等差數(shù)列前n項和的求法,是中檔題.16、【解析】

建立直角坐標系,得出的坐標,利用數(shù)量積的坐標表示得出,結(jié)合正弦函數(shù)的單調(diào)性得出的取值范圍.【詳解】取中點為,建立如下圖所示的直角坐標系則,設,,則,則設點,則,則當,即時,取最大值當,即時,取最小值則的取值范圍是故答案為:【點睛】本題主要考查了利用數(shù)量積求參數(shù)以及求正弦型函數(shù)的最值,屬于較難題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)線性回歸方程是可靠的.【解析】

(1)用列舉法求出基本事件數(shù),計算所求的概率值;(2)由已知數(shù)據(jù)求得與,則線性回歸方程可求;(3)利用回歸方程計算與8時的值,再由已知數(shù)據(jù)作差取絕對值,與1比較大小得結(jié)論.【詳解】解:(1)設“余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)為事件”,從5組數(shù)據(jù)中選取3組數(shù)據(jù),余下的2組數(shù)據(jù)共10種情況:,,,,,,,,,.其中事件的有6種,;(2)由數(shù)據(jù)求得,,且,.代入公式得:,.線性回歸方程為:;(3)當時,,,當時,,.故得到的線性回歸方程是可靠的.【點睛】本題考查了線性回歸方程的求法與應用問題,考查古典概型的概率計算問題,屬于中檔題.18、(1);(2)最大值為,最小值為【解析】

(1)由三角函數(shù)恒等變換的應用可得,利用正弦函數(shù)的周期性可求最小正周期.

(2)通過,求得,再利用正弦函數(shù)的性質(zhì)可求最值.【詳解】解答:解:(1)由已知,有

所以的最小正周期;

(2),當,即時,取最大值,且最大值為;當,即時,取最小值,且最小值為.【點睛】本題主要考查了三角函數(shù)恒等變換的應用,正弦函數(shù)性質(zhì)的應用,考查了轉(zhuǎn)化思想,屬于基礎題.19、(1);(2)①見證明;②見證明;(3)++…+,證明見解析【解析】

(1)將代入,結(jié)合可求出的值;(2)可知,,即可證明結(jié)論;(3)由題意可得,從而可得到,求和可得,然后作差,通過討論可比較二者大小.【詳解】(1)由題意:,.而,得,即,解得或,因為,所以滿足題意.(2)因為,所以.則.,因為,,所以,所以.(3)由,可得,從而,所以.因為,所以,所以.,,,,當n=1時,,故;當n=2時,,;當n≥3時,,則,.【點睛】本題主要考查了數(shù)列的遞推關(guān)系式和數(shù)列的求和,考查了不等式的證明,考查了學生的邏輯推理能力與計算能力,屬于難題.20、(1)an=3﹣2×()n﹣1(2){m|1≤m}【解析】

(1)由已知,根據(jù)遞推公式可得,,……,,所有式子累加可得;(2)在(1)得出的基礎之上解不等式可得實數(shù)的取值范圍.【詳解】(1)由已知,根據(jù)遞推公式可得an﹣an﹣1=3×()n﹣2,an﹣1﹣an﹣2=3×()n﹣3,…,a2﹣a1=3×()0,由累加法得,當n≥2時,an﹣a1=3×()0+3×()1+…+3×()n﹣2,代入a1=1得,n≥2時,an=11+2×(1﹣()n﹣1),又a1=1也滿足上式,故an=3﹣2×()n﹣1.(2)由1≤man≤5,得1≤man=m(3﹣2()n﹣1)≤5.因為3﹣2()n﹣1>0,所以,當n為奇數(shù)時,3﹣2()n﹣1∈[1,3);當n為偶數(shù)時,3﹣2()n﹣1∈(3,4],所以3﹣2()n﹣1最大值為4,最小值為1.對于任意的正整數(shù)n都有成立,所以1≤m.即所求實數(shù)m的取值范圍是{m|1≤m}.【點睛】本題主要考查數(shù)列的遞推公式知識和不等式的相關(guān)知識,式子繁瑣,易錯,屬于中檔題.21、(1);(2)證明見解析,;(3)或.【解析】

(1)運用數(shù)列的遞推式以及數(shù)列的和與通項的關(guān)系可得,再由等比數(shù)列的定義、通項公式可得結(jié)果;(2)對等式兩邊除以,結(jié)合等差數(shù)列的定義和通項公式,可得所求;(3)求得,由數(shù)列的錯位相減法求和,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論