版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省綿陽(yáng)市綿陽(yáng)高三第一次模擬考試新高考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.322.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知水平放置的△ABC是按“斜二測(cè)畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.4.已知復(fù)數(shù)和復(fù)數(shù),則為A. B. C. D.5.集合,,則()A. B. C. D.6.已知函數(shù)的圖象的一條對(duì)稱軸為,將函數(shù)的圖象向右平行移動(dòng)個(gè)單位長(zhǎng)度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.7.將函數(shù)的圖象先向右平移個(gè)單位長(zhǎng)度,在把所得函數(shù)圖象的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到函數(shù)的圖象,若函數(shù)在上沒(méi)有零點(diǎn),則的取值范圍是()A. B.C. D.8.已知正三棱錐的所有頂點(diǎn)都在球的球面上,其底面邊長(zhǎng)為4,、、分別為側(cè)棱,,的中點(diǎn).若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.9.函數(shù)的圖象大致是()A. B.C. D.10.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件12.已知集合,則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為矩形的對(duì)角線的交點(diǎn),現(xiàn)從這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),則這3個(gè)點(diǎn)不共線的概率為_(kāi)_______.14.在平面直角坐標(biāo)系中,雙曲線的一條準(zhǔn)線與兩條漸近線所圍成的三角形的面積為_(kāi)_____.15.已知數(shù)列滿足對(duì)任意,,則數(shù)列的通項(xiàng)公式__________.16.在長(zhǎng)方體中,,則異面直線與所成角的余弦值為()A. B. C. D.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程及曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.18.(12分)已知曲線C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點(diǎn),且,試求實(shí)數(shù)m值.(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.19.(12分)已知函數(shù)的最大值為2.(Ⅰ)求函數(shù)在上的單調(diào)遞減區(qū)間;(Ⅱ)中,,角所對(duì)的邊分別是,且,求的面積.20.(12分)已知函數(shù)有兩個(gè)零點(diǎn).(1)求的取值范圍;(2)是否存在實(shí)數(shù),對(duì)于符合題意的任意,當(dāng)時(shí)均有?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.21.(12分)已知函數(shù)(1)求f(x)的單調(diào)遞增區(qū)間;(2)△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.22.(10分)已知橢圓過(guò)點(diǎn)且橢圓的左、右焦點(diǎn)與短軸的端點(diǎn)構(gòu)成的四邊形的面積為.(1)求橢圓C的標(biāo)準(zhǔn)方程:(2)設(shè)A是橢圓的左頂點(diǎn),過(guò)右焦點(diǎn)F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點(diǎn)為E.①求證:;②記,,的面積分別為、、,求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側(cè)的四棱錐,其底面是邊長(zhǎng)為4的正方形,高為4,故.故選:A【點(diǎn)睛】本題考查了三視圖的簡(jiǎn)單應(yīng)用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎(chǔ)題.2、B【解析】
化簡(jiǎn)復(fù)數(shù)為的形式,然后判斷復(fù)數(shù)的對(duì)應(yīng)點(diǎn)所在象限,即可求得答案.【詳解】對(duì)應(yīng)的點(diǎn)的坐標(biāo)為在第二象限故選:B.【點(diǎn)睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.3、A【解析】
先根據(jù)已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點(diǎn)睛】本題主要考查斜二測(cè)畫法的定義和三角形面積的計(jì)算,意在考察學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.4、C【解析】
利用復(fù)數(shù)的三角形式的乘法運(yùn)算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點(diǎn)睛】熟練掌握復(fù)數(shù)的三角形式的乘法運(yùn)算法則是解題的關(guān)鍵,復(fù)數(shù)問(wèn)題高考必考,常見(jiàn)考點(diǎn)有:點(diǎn)坐標(biāo)和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,點(diǎn)的象限和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,復(fù)數(shù)的加減乘除運(yùn)算,復(fù)數(shù)的模長(zhǎng)的計(jì)算.5、A【解析】
解一元二次不等式化簡(jiǎn)集合A,再根據(jù)對(duì)數(shù)的真數(shù)大于零化簡(jiǎn)集合B,求交集運(yùn)算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.【點(diǎn)睛】本題主要考查了集合的交集運(yùn)算,涉及一元二次不等式解法及對(duì)數(shù)的概念,屬于中檔題.6、C【解析】
根據(jù)輔助角公式化簡(jiǎn)三角函數(shù)式,結(jié)合為函數(shù)的一條對(duì)稱軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【詳解】函數(shù),由輔助角公式化簡(jiǎn)可得,因?yàn)闉楹瘮?shù)圖象的一條對(duì)稱軸,代入可得,即,化簡(jiǎn)可解得,即,所以將函數(shù)的圖象向右平行移動(dòng)個(gè)單位長(zhǎng)度可得,則,故選:C.【點(diǎn)睛】本題考查了輔助角化簡(jiǎn)三角函數(shù)式的應(yīng)用,三角函數(shù)對(duì)稱軸的應(yīng)用,三角函數(shù)圖像平移變換的應(yīng)用,屬于中檔題.7、A【解析】
根據(jù)y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據(jù)定義域求出的范圍,再利用余弦函數(shù)的圖象和性質(zhì),求得ω的取值范圍.【詳解】函數(shù)的圖象先向右平移個(gè)單位長(zhǎng)度,可得的圖象,再將圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象,∴周期,若函數(shù)在上沒(méi)有零點(diǎn),∴,∴,,解得,又,解得,當(dāng)k=0時(shí),解,當(dāng)k=-1時(shí),,可得,.故答案為:A.【點(diǎn)睛】本題考查函數(shù)y=Acos(ωx+φ)的圖象變換及零點(diǎn)問(wèn)題,此類問(wèn)題通常采用數(shù)形結(jié)合思想,構(gòu)建不等關(guān)系式,求解可得,屬于較難題.8、D【解析】
如圖,平面截球所得截面的圖形為圓面,計(jì)算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過(guò)作底面的垂線,垂足為,與平面交點(diǎn)記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點(diǎn)睛】本題考查了三棱錐的外接球問(wèn)題,三棱錐體積,球體積,意在考查學(xué)生的計(jì)算能力和空間想象能力.9、C【解析】
根據(jù)函數(shù)奇偶性可排除AB選項(xiàng);結(jié)合特殊值,即可排除D選項(xiàng).【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項(xiàng)A,B;又∵當(dāng)時(shí),,故選:C.【點(diǎn)睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.10、D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因?yàn)閤,,當(dāng)時(shí),不妨取,,故時(shí),不成立,當(dāng)時(shí),不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點(diǎn)睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.11、B【解析】
由數(shù)量積的定義可得,為實(shí)數(shù),則由可得,根據(jù)共線的性質(zhì),可判斷;再根據(jù)判斷,由等價(jià)法即可判斷兩命題的關(guān)系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點(diǎn)睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應(yīng)用.12、C【解析】
先化簡(jiǎn)集合A,再與集合B求交集.【詳解】因?yàn)?,,所?故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算以及分式不等式的解法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,由此能求出這3個(gè)點(diǎn)不共線的概率.【詳解】解:為矩形的對(duì)角線的交點(diǎn),現(xiàn)從,,,,這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,這3個(gè)點(diǎn)不共線的概率為.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查對(duì)立事件概率計(jì)算公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、【解析】
求出雙曲線的漸近線方程,求出準(zhǔn)線方程,求出三角形的頂點(diǎn)的坐標(biāo),然后求解面積.【詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準(zhǔn)線方程為,雙曲線的漸近線方程為:,可得準(zhǔn)線方程與雙曲線的兩條漸近線所圍成的三角形的頂點(diǎn)的坐標(biāo),,,,則三角形的面積為.故答案為:【點(diǎn)睛】本題考查雙曲線方程的應(yīng)用,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中檔題.15、【解析】
利用累加法求得數(shù)列的通項(xiàng)公式,由此求得的通項(xiàng)公式.【詳解】由題,所以故答案為:【點(diǎn)睛】本小題主要考查累加法求數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.16、C【解析】
根據(jù)確定是異面直線與所成的角,利用余弦定理計(jì)算得到答案.【詳解】由題意可得.因?yàn)椋允钱惷嬷本€與所成的角,記為,故.故選:.【點(diǎn)睛】本題考查了異面直線夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.(2)利用(1)的結(jié)論,進(jìn)一步利用一元二次方程根和系數(shù)的關(guān)系式的應(yīng)用求出結(jié)果.【詳解】解:(1)直線的參數(shù)方程為(為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為.曲線的極坐標(biāo)方程為.轉(zhuǎn)換為,轉(zhuǎn)換為直角坐標(biāo)方程為.(2)直線的參數(shù)方程為(為參數(shù)),轉(zhuǎn)換為標(biāo)準(zhǔn)式為(為參數(shù)),代入圓的直角坐標(biāo)方程整理得,所以,..【點(diǎn)睛】本題屬于基礎(chǔ)本題考查的知識(shí)要點(diǎn):主要考查極坐標(biāo),參數(shù)方程與普通方程互化,及求三角形面積.需要熟記極坐標(biāo)系與參數(shù)方程的公式,及與解析幾何相關(guān)的直線與曲線位置關(guān)系的一些解題思路.18、(1)或;(2).【解析】
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,在直角坐標(biāo)條件下求出曲線的圓心坐標(biāo)和半徑,將直線的參數(shù)方程化為普通方程,由勾股定理列出等式可求的值;(2)將圓化為參數(shù)方程形式,代入由三角公式化簡(jiǎn)可求其取值范圍.【詳解】(1)曲線C的極坐標(biāo)方程是化為直角坐標(biāo)方程為:直線的直角坐標(biāo)方程為:圓心到直線l的距離(弦心距)圓心到直線的距離為:或(2)曲線的方程可化為,其參數(shù)方程為:為曲線上任意一點(diǎn),的取值范圍是19、(Ⅰ)(Ⅱ)【解析】
(1)由題意,f(x)的最大值為所以而m>0,于是m=,f(x)=2sin(x+).由正弦函數(shù)的單調(diào)性可得x滿足即所以f(x)在[0,π]上的單調(diào)遞減區(qū)間為(2)設(shè)△ABC的外接圓半徑為R,由題意,得化簡(jiǎn)得sinA+sinB=2sinAsinB.由正弦定理,得①由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0②將①式代入②,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故20、(1);(2).【解析】
(1)對(duì)求導(dǎo),對(duì)參數(shù)進(jìn)行分類討論,根據(jù)函數(shù)單調(diào)性即可求得.(2)先根據(jù),得,再根據(jù)零點(diǎn)解得,轉(zhuǎn)化不等式得,令,化簡(jiǎn)得,因此,,最后根據(jù)導(dǎo)數(shù)研究對(duì)應(yīng)函數(shù)單調(diào)性,確定對(duì)應(yīng)函數(shù)最值,即得取值集合.【詳解】(1),當(dāng)時(shí),對(duì)恒成立,與題意不符,當(dāng),,∴時(shí),即函數(shù)在單調(diào)遞增,在單調(diào)遞減,∵和時(shí)均有,∴,解得:,綜上可知:的取值范圍;(2)由(1)可知,則,由的任意性及知,,且,∴,故,又∵,令,則,且恒成立,令,而,∴時(shí),時(shí),∴,令,若,則時(shí),,即函數(shù)在單調(diào)遞減,∴,與不符;若,則時(shí),,即函數(shù)在單調(diào)遞減,∴,與式不符;若,解得,此時(shí)恒成立,,即函數(shù)在單調(diào)遞增,又,∴時(shí),;時(shí),符合式,綜上,存在唯一實(shí)數(shù)符合題意.【點(diǎn)睛】利用導(dǎo)數(shù)研究不等式恒成立或存在型問(wèn)題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.21、(1)(2)【解析】
(1)利用降次公式、輔助角公式化簡(jiǎn)解析式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)遞增區(qū)間.(2)先由求得,利用正弦定理得到,結(jié)合余弦定理列方程,求得,由此求得三角形的面積.【詳解】(1)函數(shù),,由,得.所以的單調(diào)遞增區(qū)間為.(2)因?yàn)榍覟殇J角,所以.由及正弦定理可得,又,由
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年智能防盜門安裝與系統(tǒng)集成服務(wù)協(xié)議3篇
- 2024技術(shù)支持協(xié)議書范本
- 2024版聘用合同勞動(dòng)合同
- 2025年度苯板銷售與產(chǎn)業(yè)鏈整合合同2篇
- 二零二五年度環(huán)保型廣告車租賃服務(wù)協(xié)議6篇
- 2024延期支付科研經(jīng)費(fèi)合同協(xié)議書3篇
- 2024昆明市二手房買賣合同及其空氣質(zhì)量保證協(xié)議
- 二零二五年金融衍生品交易合同公證協(xié)議3篇
- 二零二五年度賓館客房租賃合同解除協(xié)議2篇
- 武漢信息傳播職業(yè)技術(shù)學(xué)院《空間數(shù)據(jù)庫(kù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 常用靜脈藥物溶媒的選擇
- 當(dāng)代西方文學(xué)理論知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋武漢科技大學(xué)
- 2024年預(yù)制混凝土制品購(gòu)銷協(xié)議3篇
- 2024-2030年中國(guó)高端私人會(huì)所市場(chǎng)競(jìng)爭(zhēng)格局及投資經(jīng)營(yíng)管理分析報(bào)告
- GA/T 1003-2024銀行自助服務(wù)亭技術(shù)規(guī)范
- 《消防設(shè)備操作使用》培訓(xùn)
- 新交際英語(yǔ)(2024)一年級(jí)上冊(cè)Unit 1~6全冊(cè)教案
- 2024年度跨境電商平臺(tái)運(yùn)營(yíng)與孵化合同
- 2024年電動(dòng)汽車充電消費(fèi)者研究報(bào)告-2024-11-新能源
- 湖北省黃岡高級(jí)中學(xué)2025屆物理高一第一學(xué)期期末考試試題含解析
- 上海市徐匯中學(xué)2025屆物理高一第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析
評(píng)論
0/150
提交評(píng)論