




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆北京西城八中少年班高一下數(shù)學期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線x+y+2=0分別與x軸,y軸交于A,B兩點,點P在圓(x﹣2)2+y2=2上,則△ABP面積的最小值為()A.1 B.2 C. D.2.設(shè)是兩條不同的直線,是兩個不同的平面,則下列命題中正確的是()A.若,則B.若,則C.若,則D.若,則3.設(shè),,則下列不等式成立的是()A. B. C. D.4.已知向量,,且,,,則一定共線的三點是()A.A,B,D B.A,B,C C.B,C,D D.A,C,D5.等差數(shù)列中,,,下列結(jié)論錯誤的是()A.,,成等比數(shù)列 B.C. D.6.已知為等差數(shù)列,為其前項和.若,則()A. B. C. D.7.已知數(shù)列{an}為等差數(shù)列,Sn是它的前n項和.若=2,S3=12,則S4=()A.10 B.16 C.20 D.248.點關(guān)于直線的對稱點的坐標為()A. B. C. D.9.閱讀如圖所示的程序框圖,運行相應的程序,輸出的結(jié)果是()A.3 B.11 C.38 D.12310.已知函數(shù)(,,)的部分圖象如圖所示,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,已知,,任意點關(guān)于點的對稱點為,點關(guān)于點的對稱點為,則向量_______(用,表示向量)12.已知圓上有兩個點到直線的距離為3,則半徑的取值范圍是________13.已知方程的兩根分別為、、且,且__________.14.如圖,在中,已知點在邊上,,,則的長為____________.15.已知扇形的圓心角為,半徑為,則扇形的面積.16.英國物理學家和數(shù)學家艾薩克·牛頓(Isaacnewton,1643-1727年)曾提出了物體在常溫環(huán)境下溫度變化的冷卻模型.現(xiàn)把一杯溫水放在空氣中冷卻,假設(shè)這杯水從開始冷卻,x分鐘后物體的溫度滿足:(其中…為自然對數(shù)的底數(shù)).則從開始冷卻,經(jīng)過5分鐘時間這杯水的溫度是________(單位:℃).三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖在四棱錐中,底面是矩形,點、分別是棱和的中點.(1)求證:平面;(2)若,且平面平面,證明平面.18.中,角的對邊分別為,且.(I)求角的大?。唬↖I)若,求的最小值.19.某校從參加高二年級期末考試的學生中抽出60名學生,并統(tǒng)計了他們的化學成績(成績均為整數(shù)且滿分為100分),把其中不低于50分的分成五段,,…,后畫出如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問題:(1)求出這60名學生中化學成績低于50分的人數(shù);(2)估計高二年級這次考試化學學科及格率(60分以上為及格);(3)從化學成績不及格的學生中隨機調(diào)查1人,求他的成績低于50分的概率.20.如圖,已知矩形ABCD中,,,M是以CD為直徑的半圓周上的任意一點(與C,D均不重合),且平面平面ABCD.(1)求證:平面平面BCM;(2)當四棱錐的體積最大時,求AM與CD所成的角.21.已知關(guān)于的不等式.(1)當時,求不等式的解集;(2)當且m≠1時,求不等式的解集.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
求得圓心到直線的距離,減去圓的半徑,求得△ABP面積的最小時,三角形的高,由此求得△ABP面積的最小值.【詳解】依題意設(shè),故.圓的圓心為,半徑為,所以圓上的點到直線的距離的最小值為(其中為圓心到直線的距離),所以△ABP面積的最小值為.故選:B【點睛】本小題主要考查圓上的點到直線的距離的最小值的求法,考查三角形面積的最值的求法,屬于基礎(chǔ)題.2、D【解析】
根據(jù)線線、線面和面面平行和垂直有關(guān)定理,對選項逐一分析,由此得出正確選項.【詳解】對于A選項,兩個平面垂直,一個平面內(nèi)的直線不一定垂直另一個平面內(nèi)的直線,故A選項錯誤.對于B選項,兩個平面平行,一個平面內(nèi)的直線和另一個平面內(nèi)的直線不一定平行,故B選項錯誤.對于C選項,兩條直線都跟同一個平面平行,它們可能相交、異面或者平行,故C選項錯誤.對于D選項,根據(jù)平行的傳遞性以及面面垂直的判定定理可知,D選項命題正確.綜上所述,本小題選D.【點睛】本小題主要考查空間線線、線面和面面平行和垂直有關(guān)定理的運用,考查邏輯推理能力,屬于基礎(chǔ)題.3、D【解析】試題分析:本題是選擇題,可采用逐一檢驗,利用特殊值法進行檢驗,很快問題得以解決.解:∵a>b,c>d;∴設(shè)a=1,b=-1,c=-2,d=-5,選項A,1-(-2)>-1-(-5),不成立;選項B,1(-2)>(-1)(-5),不成立;取選項C,,不成立,故選D考點:不等式的性質(zhì)點評:本題主要考查了基本不等式,基本不等式在考綱中是C級要求,本題屬于基礎(chǔ)題4、A【解析】
根據(jù)向量共線定理進行判斷即可.【詳解】因為,且,有公共點B,所以A,B,D三點共線.故選:A.【點睛】本題考查了用向量共線定理證明三點共線問題,屬于??碱}.5、C【解析】
根據(jù)條件得到公差,然后得到等差數(shù)列的通項,從而對四個選項進行判斷,得到答案.【詳解】等差數(shù)列中,,所以,所以,所以,,,,,,,,,所以,所以,,成等比數(shù)列,故A選項正確,,故B選項正確,,故C選項錯誤,,故D選項正確.故選:C.【點睛】本題考查求等差數(shù)列的項,等差數(shù)列求前項的和,屬于簡單題.6、D【解析】試題分析:設(shè)等差數(shù)列的公差為,由題意得,解得,所以,故答案為D.考點:1、數(shù)列的通項公式;2、數(shù)列的前項和.7、C【解析】
根據(jù)等差數(shù)列的前n項和公式,即可求出.【詳解】因為S3=3+d=6+3d=12,解得d=2,所以S4=4+d=20.【點睛】本題主要考查了等差數(shù)列的前n項和公式,屬于中檔題.8、D【解析】令,設(shè)對稱點的坐標為,可得的中點在直線上,故可得①,又可得的斜率,由垂直關(guān)系可得②,聯(lián)立①②解得,即對稱點的坐標為,故選D.點睛:本題考查對稱問題,得出中點在直線且連線與已知直線垂直是解決問題的關(guān)鍵,屬中檔題;點關(guān)于直線成軸對稱問題,由軸對稱定義知,對稱軸即為兩對稱點連線的“垂直平分線”,利用“垂直”即斜率關(guān)系,“平分”即中點在直線上這兩個條件建立方程組,就可求出對稱點的坐標.9、B【解析】試題分析:通過框圖的要求;將第一次循環(huán)的結(jié)果寫出,通過判斷框;再將第二次循環(huán)的結(jié)果寫出,通過判斷框;輸出結(jié)果.解;經(jīng)過第一次循環(huán)得到a=12+2=3經(jīng)過第一次循環(huán)得到a=32+2=11不滿足判斷框的條件,執(zhí)行輸出11故選B點評:本題考查程序框圖中的循環(huán)結(jié)構(gòu)常采用將前幾次循環(huán)的結(jié)果寫出找規(guī)律.10、D【解析】試題分析:由圖可知,,∴,又,∴,∴,又.∴.考點:由圖象確定函數(shù)解析式.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先求得,然后根據(jù)中位線的性質(zhì),求得.【詳解】依題意,由于分別是線段的中點,故.【點睛】本小題主要考查平面向量減法運算,考查三角形中位線,屬于基礎(chǔ)題.12、【解析】
由圓上有兩個點到直線的距離為3,先求出圓心到直線的距離,得到不等關(guān)系式,即可求解.【詳解】由題意,圓的圓心坐標為,半徑為,則圓心到直線的距離為,又因為圓上有兩個點到直線的距離為3,則,解得,即圓的半徑的取值范圍是.【點睛】本題主要考查了直線與圓的位置關(guān)系的應用,其中解答中合理應用圓心到直線的距離,結(jié)合圖象得到半徑的不等關(guān)系式是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于中檔試題.13、【解析】
由韋達定理和兩角和的正切公式可得,進一步縮小角的范圍可得,進而可求.【詳解】方程兩根、,,,,又,,,,,,,結(jié)合,,故答案為.【點睛】本題考查兩角和與差的正切函數(shù),涉及韋達定理,屬中檔題.14、【解析】
由誘導公式可知,在中用余弦定理可得BD的長。【詳解】由題得,,在中,可得,又,代入得,解得.故答案為:【點睛】本題考查余弦定理和誘導公式,是基礎(chǔ)題。15、【解析】試題分析:由題可知,;考點:扇形面積公式16、45【解析】
直接利用對數(shù)的運算性質(zhì)計算即可,【詳解】.故答案為:45.【點睛】本題考查對數(shù)的運算性質(zhì),考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)見證明【解析】
(1)可證,從而得到要求證的線面平行.(2)可證,再由及是棱的中點可得,從而得到平面.【詳解】(1)證明:因為點、分別是棱和的中點,所以,又在矩形中,,所以,又面,面,所以平面(2)證明:在矩形中,,又平面平面,平面平面,面,所以平面,又面,所以①因為且是的中點,所以,②由①②及面,面,,所以平面.【點睛】線面平行的證明的關(guān)鍵是在面中找到一條與已知直線平行的直線,找線的方法可利用三角形的中位線或平行公理.線面垂直的判定可由線線垂直得到,注意線線是相交的,而要求證的線線垂直又可以轉(zhuǎn)化為已知的線面垂直(有時它來自面面垂直)來考慮.18、(I);(II)最小值為2.【解析】
(I),化簡即得C的值;(II)【詳解】(I)因為,所以;(II)由余弦定理可得,,因為,所以,當且僅當?shù)淖钚≈禐?.【點睛】本題主要考查正弦定理余弦定理解三角形和基本不等式,意在考查學生對這些知識的理解掌握水平和分析推理能力.19、(1)6人;(2)75%;(3).【解析】試題分析:(1)由頻率分布直方圖可得化學成績低于50分的頻率為0.1,然后可求得人數(shù)為人;(2)根據(jù)頻率分布直方圖求分數(shù)在第三、四、五、六組的頻率之和即可;(3)結(jié)合圖形可得“成績低于50分”的人數(shù)是6人,成績在這組的人數(shù)是,由古典概型概率公式可得所求概率為。試題解析:(1)因為各組的頻率和等于1,由頻率分布直方圖可得低于50分的頻率為:,所以低于分的人數(shù)為(人).(2)依題意可得成績60及以上的分數(shù)所在的第三、四、五、六組(低于50分的為第一組),其頻率之和為,故抽樣學生成績的及格率是,于是,可以估計這次考試化學學科及格率約為75%.(3)由(1)知,“成績低于50分”的人數(shù)是6人,成績在這組的人數(shù)是(人),所以從成績不及格的學生中隨機調(diào)查1人,有15種選法,成績低于50分有6種選法,故所求概率為.20、(1)證明見解析(2)【解析】
(1)只證明CM⊥平面ADM即可,即證明CM垂直于該平面內(nèi)的兩條相交直線,或者使用面面垂直的性質(zhì),本題的條件是平面CDM⊥平面ABCD,而M是以CD為直徑的半圓周上一點,能夠得到CM⊥DM,由面面垂直的性質(zhì)即可證明;(2)當四棱錐M一ABCD的體積最大時,M為半圓周中點處,可得角MAB就是AM與CD所成的角,利用已知即可求解.【詳解】(1)證明:CD為直徑,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平面ADM平面BCM,(2)當M為半圓弧CD的中點時,四棱錐的體積最大,此時,過點M作MOCD于點E,平面CDM平面ABCDMO平面ABCD,即MO為四棱錐的高又底面ABCD面積為定值2,AM與CD所成的角即AM與AB所成的角,求得,三角形為正三角形,,故AM與CD所成的角為【點睛】本題主要考查異面直線成的角,面面垂直的判定定理,屬于中檔題.解答空間幾何體中垂直關(guān)系時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年放射性核素遠距離治療機項目建議書
- 2025年EMI屏蔽材料項目發(fā)展計劃
- 2025年重氮化合物項目發(fā)展計劃
- 小學校園安全教育
- 2025年ZA系列甲苯歧化催化劑合作協(xié)議書
- 2025年表面涂鍍材料項目建設(shè)總綱及方案
- 幼兒語言教育活動中有效提問
- 陜西警官職業(yè)學院《食品試驗設(shè)計與統(tǒng)計分析實驗》2023-2024學年第二學期期末試卷
- 陜西鐵路工程職業(yè)技術(shù)學院《數(shù)據(jù)倉庫與挖掘技術(shù)》2023-2024學年第二學期期末試卷
- 隨州職業(yè)技術(shù)學院《二外法語I》2023-2024學年第二學期期末試卷
- 代辦轉(zhuǎn)學合同范例
- 2024年揚州市事業(yè)單位統(tǒng)考招聘筆試真題
- 高中主題班會 高一下學期《自律自主自覺-成就更好的自己》主題班會教案
- 舞蹈簡史考試題及答案
- 3.1公民基本權(quán)利 課件 2024-2025學年統(tǒng)編版道德與法治八年級下冊
- 2025年浙江安防職業(yè)技術(shù)學院單招職業(yè)傾向性考試題庫匯編
- 2025年ACR痛風管理指南
- 2024年畢節(jié)市東關(guān)坡糧食儲備有限公司社會招聘筆試真題
- DBJ50T-309-2018 地下管網(wǎng)危險源監(jiān)控系統(tǒng)技術(shù)標準
- 廣東省汕頭市2025年普通高考第一次模擬考試生物學試題(含答案)
- 酒店服務人員職業(yè)道德課件
評論
0/150
提交評論