




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省宿州市時村中學新高考數(shù)學押題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)2.已知函數(shù)(表示不超過x的最大整數(shù)),若有且僅有3個零點,則實數(shù)a的取值范圍是()A. B. C. D.3.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機取一重卦,則該重卦至少有2個陽爻的概率是()A. B. C. D.4.已知,,則()A. B. C. D.5.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.36.已知,則下列不等式正確的是()A. B.C. D.7.己知,,,則()A. B. C. D.8.已知雙曲線的左、右頂點分別是,雙曲線的右焦點為,點在過且垂直于軸的直線上,當?shù)耐饨訄A面積達到最小時,點恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.9.設函數(shù)定義域為全體實數(shù),令.有以下6個論斷:①是奇函數(shù)時,是奇函數(shù);②是偶函數(shù)時,是奇函數(shù);③是偶函數(shù)時,是偶函數(shù);④是奇函數(shù)時,是偶函數(shù)⑤是偶函數(shù);⑥對任意的實數(shù),.那么正確論斷的編號是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤10.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.11.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.12.數(shù)列{an},滿足對任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列{an}的前100項的和S100=()A.132 B.299 C.68 D.99二、填空題:本題共4小題,每小題5分,共20分。13.若,則__________.14.設是定義在上的函數(shù),且,對任意,若經(jīng)過點的一次函數(shù)與軸的交點為,且互不相等,則稱為關于函數(shù)的平均數(shù),記為.當_________時,為的幾何平均數(shù).(只需寫出一個符合要求的函數(shù)即可)15.在三棱錐P-ABC中,,,,三個側面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_________.16.已知函數(shù),若,則的取值范圍是__三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和和通項滿足.(1)求數(shù)列的通項公式;(2)已知數(shù)列中,,,求數(shù)列的前項和.18.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.19.(12分)已知函數(shù).(1)證明:當時,;(2)若函數(shù)只有一個零點,求正實數(shù)的值.20.(12分)等差數(shù)列的前項和為,已知,.(1)求數(shù)列的通項公式;(2)設數(shù)列{}的前項和為,求使成立的的最小值.21.(12分)在創(chuàng)建“全國文明衛(wèi)生城”過程中,運城市“創(chuàng)城辦”為了調(diào)查市民對創(chuàng)城工作的了解情況,進行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次),通過隨機抽樣,得到參加問卷調(diào)查的人的得分統(tǒng)計結果如表所示:.組別頻數(shù)(1)由頻數(shù)分布表可以大致認為,此次問卷調(diào)查的得分似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),利用該正態(tài)分布,求;(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎勵方案:①得分不低于的可以獲贈次隨機話費,得分低于的可以獲贈次隨機話費;②每次獲贈的隨機話費和對應的概率為:贈送話費的金額(單位:元)概率現(xiàn)有市民甲參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列與數(shù)學期望.附:參考數(shù)據(jù)與公式:,若,則,,22.(10分)如圖,在四棱錐中,底面是邊長為2的菱形,,.(1)證明:平面平面ABCD;(2)設H在AC上,,若,求PH與平面PBC所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.2、A【解析】
根據(jù)[x]的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關系轉(zhuǎn)化為f(x)與g(x)=ax有三個不同的交點,利用數(shù)形結合進行求解即可.【詳解】當時,,當時,,當時,,當時,,若有且僅有3個零點,則等價為有且僅有3個根,即與有三個不同的交點,作出函數(shù)和的圖象如圖,當a=1時,與有無數(shù)多個交點,當直線經(jīng)過點時,即,時,與有兩個交點,當直線經(jīng)過點時,即時,與有三個交點,要使與有三個不同的交點,則直線處在過和之間,即,故選:A.【點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設條件構建關于參數(shù)的不等式,再通過解不等式確定參數(shù)的范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域(最值)問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解.3、C【解析】
利用組合的方法求所求的事件的對立事件,即該重卦沒有陽爻或只有1個陽爻的概率,再根據(jù)兩對立事件的概率和為1求解即可.【詳解】設“該重卦至少有2個陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個陽爻”的對立事件是“該重卦沒有陽爻或只有1個陽爻”,其中,沒有陽爻(即6個全部是陰爻)的情況有1種,只有1個陽爻的情況有種,故,所以該重卦至少有2個陽爻的概率是.故選:C【點睛】本題主要考查了對立事件概率和為1的方法求解事件概率的方法.屬于基礎題.4、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎題.5、B【解析】
根據(jù)極值點處的導數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計算即可.【詳解】解:由已知得,,,經(jīng)檢驗滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點睛】本題考查了導數(shù)極值的性質(zhì)以及利用導數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.6、D【解析】
利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.7、B【解析】
先將三個數(shù)通過指數(shù),對數(shù)運算變形,再判斷.【詳解】因為,,所以,故選:B.【點睛】本題主要考查指數(shù)、對數(shù)的大小比較,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.8、A【解析】
點的坐標為,,展開利用均值不等式得到最值,將點代入雙曲線計算得到答案.【詳解】不妨設點的坐標為,由于為定值,由正弦定理可知當取得最大值時,的外接圓面積取得最小值,也等價于取得最大值,因為,,所以,當且僅當,即當時,等號成立,此時最大,此時的外接圓面積取最小值,點的坐標為,代入可得,.所以雙曲線的方程為.故選:【點睛】本題考查了求雙曲線方程,意在考查學生的計算能力和應用能力.9、A【解析】
根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性并證明.【詳解】當是偶函數(shù),則,所以,所以是偶函數(shù);當是奇函數(shù)時,則,所以,所以是偶函數(shù);當為非奇非偶函數(shù)時,例如:,則,,此時,故⑥錯誤;故③④正確.故選:A【點睛】本題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關鍵,屬于基礎題.10、C【解析】
根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.11、C【解析】
根據(jù)拋物線方程求得點的坐標,根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.12、B【解析】
由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對任意的,均有為定值,,故,是以3為周期的數(shù)列,故,.故選:.【點睛】本題考查周期數(shù)列求和,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
因為,由二倍角公式得到,故得到.故答案為.14、【解析】
由定義可知三點共線,即,通過整理可得,繼而可求出正確答案.【詳解】解:根據(jù)題意,由定義可知:三點共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點睛】本題考查了兩點的斜率公式,考查了推理能力,考查了運算能力.本題關鍵是分析出三點共線.15、【解析】
先確定頂點在底面的射影,再求出三棱錐的高以及各側面三角形的高,利用各個面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設頂點在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個側面與底面所成的角均為,,,的高,,設內(nèi)切球的半徑為R,∴,內(nèi)切球表面積.故答案為:.【點睛】本題考查三棱錐內(nèi)切球的表面積問題,考查學生空間想象能力,本題解題關鍵是找到內(nèi)切球的半徑,是一道中檔題.16、【解析】
根據(jù)分段函數(shù)的性質(zhì),即可求出的取值范圍.【詳解】當時,,,當時,,所以,故的取值范圍是.故答案為:.【點睛】本題考查分段函數(shù)的性質(zhì),已知分段函數(shù)解析式求參數(shù)范圍,還涉及對數(shù)和指數(shù)的運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)當時,利用可得,故可利用等比數(shù)列的通項公式求出的通項.(2)利用分組求和法可求數(shù)列的前項和.【詳解】(1)當時,,所以,當時,,①,②所以,即,又因為,故,所以,所以是首項,公比為的等比數(shù)列,故.(2)由得:數(shù)列為等差數(shù)列,公差,,,.【點睛】本題考查數(shù)列的通項與求和,注意數(shù)列求和關鍵看通項的結構形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.18、(Ⅰ)證明見解析;(Ⅱ)【解析】
(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標系,平面的法向量,,計算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標系,則,,,,.設平面的法向量,則,即,取得到,,設直線與平面所成角為故.【點睛】本題考查了線面垂直,線面夾角,意在考查學生的空間想象能力和計算能力.19、(1)證明見解析;(2).【解析】
(1)把轉(zhuǎn)化成,令,由題意得,即證明恒成立,通過導數(shù)求證即可(2)直接求導可得,,令,得或,故根據(jù)0與的大小關系來進行分類討論即可【詳解】證明:(1)令,則.分析知,函數(shù)的增區(qū)間為,減區(qū)間為.所以當時,.所以,即,所以.所以當時,.解:(2)因為,所以.討論:①當時,,此時函數(shù)在區(qū)間上單調(diào)遞減.又,故此時函數(shù)僅有一個零點為0;②當時,令,得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極大值,所以極小值.當時,有.又,此時,故當時,函數(shù)還有一個零點,不符合題意;③當時,令得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極小值,所以極大值.若,則,得,所以,所以當且時,,故此時函數(shù)還有一個零點,不符合題意.綜上,所求實數(shù)的值為.【點睛】本題考查不等式的恒成立問題和函數(shù)的零點問題,本題的難點在于把導數(shù)化成因式分解的形式,如,進而分類討論,本題屬于難題20、(1);(2)的最小值為19.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 包頭輕工職業(yè)技術學院《中國古代文學作品選(一)》2023-2024學年第二學期期末試卷
- 黑龍江省大慶市肇源縣東部五校2024-2025學年(五四學制)七年級下學期4月月考語文試題(含解析)
- 2025企業(yè)合同的基本內(nèi)容
- 統(tǒng)計員給員工培訓大綱
- 汽車行業(yè)動態(tài)解讀
- 文化活動場所的安全管理計劃
- 2025家電購銷合同模板
- 聯(lián)動社區(qū)發(fā)展的圖書館項目計劃
- 幼兒園教研學期工作計劃的教學資源與教學手段
- 2025照明設備銷售合同范本
- 婦女營養(yǎng)保健培訓
- 時間序列的平穩(wěn)性測試題及答案
- 2025-2030中國數(shù)據(jù)要素市場發(fā)展前景及趨勢預測分析研究報告
- 中外航海文化知到課后答案智慧樹章節(jié)測試答案2025年春中國人民解放軍海軍大連艦艇學院
- 2025年華潤燃氣投資中國有限公司招聘筆試參考題庫含答案解析
- 2022年《跟徐老師學漢語》新HSK六級詞匯詞
- 妊娠劇吐診斷以及臨床處理專家共識
- [PPT]橋梁工程樁基施工超全解析(41頁 配圖豐富)_ppt
- 叉車定期檢驗研究分析報告
- 光纜和管道的施工規(guī)范標準
- MDK5軟件入門
評論
0/150
提交評論