江西南昌十所重點中學(xué)新高考仿真卷數(shù)學(xué)試卷及答案解析_第1頁
江西南昌十所重點中學(xué)新高考仿真卷數(shù)學(xué)試卷及答案解析_第2頁
江西南昌十所重點中學(xué)新高考仿真卷數(shù)學(xué)試卷及答案解析_第3頁
江西南昌十所重點中學(xué)新高考仿真卷數(shù)學(xué)試卷及答案解析_第4頁
江西南昌十所重點中學(xué)新高考仿真卷數(shù)學(xué)試卷及答案解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西南昌十所重點中學(xué)新高考仿真卷數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.公比為2的等比數(shù)列中存在兩項,,滿足,則的最小值為()A. B. C. D.2.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.193.某校在高一年級進行了數(shù)學(xué)競賽(總分100分),下表為高一·一班40名同學(xué)的數(shù)學(xué)競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學(xué)生的數(shù)學(xué)競賽成績,運行相應(yīng)的程序,輸出,的值,則()A.6 B.8 C.10 D.124.若函數(shù)的定義域為M={x|-2≤x≤2},值域為N={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.5.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.6.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件7.函數(shù)f(x)=lnA. B. C. D.8.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.9.下圖是我國第24~30屆奧運獎牌數(shù)的回眸和中國代表團獎牌總數(shù)統(tǒng)計圖,根據(jù)表和統(tǒng)計圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團的奧運獎牌總數(shù)一直保持上升趨勢B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實際意義C.第30屆與第29屆北京奧運會相比,奧運金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數(shù)的中位數(shù)是54.510.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.1711.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.12.已知為虛數(shù)單位,若復(fù)數(shù)滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的各項均為正數(shù),記為的前n項和,若,,則________.14.函數(shù)滿足,當時,,若函數(shù)在上有1515個零點,則實數(shù)的范圍為___________.15.已知雙曲線的右準線與漸近線的交點在拋物線上,則實數(shù)的值為___________.16.的展開式中所有項的系數(shù)和為______,常數(shù)項為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)分別為的內(nèi)角的對邊.已知.(1)若,求;(2)已知,當?shù)拿娣e取得最大值時,求的周長.18.(12分)已知橢圓的右焦點為,直線被稱作為橢圓的一條準線,點在橢圓上(異于橢圓左、右頂點),過點作直線與橢圓相切,且與直線相交于點.(1)求證:.(2)若點在軸的上方,當?shù)拿娣e最小時,求直線的斜率.附:多項式因式分解公式:19.(12分)某公園準備在一圓形水池里設(shè)置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心為的中點,其中米,半徑米,市民可位于水池邊緣任意一點處觀賞.(1)若當時,,求此時的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.20.(12分)已知的內(nèi)角、、的對邊分別為、、,滿足.有三個條件:①;②;③.其中三個條件中僅有兩個正確,請選出正確的條件完成下面兩個問題:(1)求;(2)設(shè)為邊上一點,且,求的面積.21.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.22.(10分)已知函數(shù)(1)求f(x)的單調(diào)遞增區(qū)間;(2)△ABC內(nèi)角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)已知條件和等比數(shù)列的通項公式,求出關(guān)系,即可求解.【詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【點睛】本題考查等比數(shù)列通項公式,注意為正整數(shù),如用基本不等式要注意能否取到等號,屬于基礎(chǔ)題.2、B【解析】

計算,故,解得答案.【詳解】當時,,即,且.故,,故.故選:.【點睛】本題考查了數(shù)列的相關(guān)計算,意在考查學(xué)生的計算能力和對于數(shù)列公式方法的綜合應(yīng)用.3、D【解析】

根據(jù)程序框圖判斷出的意義,由此求得的值,進而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數(shù),的取值為成績大于等于60且小于90的人數(shù),故,,所以.故選:D【點睛】本小題考查利用程序框圖計算統(tǒng)計量等基礎(chǔ)知識;考查運算求解能力,邏輯推理能力和數(shù)學(xué)應(yīng)用意識.4、B【解析】因為對A不符合定義域當中的每一個元素都有象,即可排除;對B滿足函數(shù)定義,故符合;對C出現(xiàn)了定義域當中的一個元素對應(yīng)值域當中的兩個元素的情況,不符合函數(shù)的定義,從而可以否定;對D因為值域當中有的元素沒有原象,故可否定.故選B.5、D【解析】

根據(jù)為等腰三角形,可求出點P的坐標,又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.6、C【解析】

先根據(jù)直線與直線平行確定的值,進而即可確定結(jié)果.【詳解】因為直線與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.7、C【解析】因為fx=lnx2-4x+4x-23=8、C【解析】

首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.9、B【解析】

根據(jù)表格和折線統(tǒng)計圖逐一判斷即可.【詳解】A.中國代表團的奧運獎牌總數(shù)不是一直保持上升趨勢,29屆最多,錯誤;B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運會相比,奧運金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯誤;D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【點睛】此題考查統(tǒng)計圖,關(guān)鍵點讀懂折線圖,屬于簡單題目.10、C【解析】

首先根據(jù)對數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數(shù)可以為8.故選:C【點睛】本題考查對數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.11、A【解析】

由函數(shù)性質(zhì),結(jié)合特殊值驗證,通過排除法求得結(jié)果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關(guān)鍵,難度一般.12、A【解析】分析:題設(shè)中復(fù)數(shù)滿足的等式可以化為,利用復(fù)數(shù)的四則運算可以求出.詳解:由題設(shè)有,故,故選A.點睛:本題考查復(fù)數(shù)的四則運算和復(fù)數(shù)概念中的共軛復(fù)數(shù),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、127【解析】

已知條件化簡可化為,等式兩邊同時除以,則有,通過求解方程可解得,即證得數(shù)列為等比數(shù)列,根據(jù)已知即可解得所求.【詳解】由..故答案為:.【點睛】本題考查通過遞推公式證明數(shù)列為等比數(shù)列,考查了等比的求和公式,考查學(xué)生分析問題的能力,難度較易.14、【解析】

由已知,在上有3個根,分,,,四種情況討論的單調(diào)性、最值即可得到答案.【詳解】由已知,的周期為4,且至多在上有4個根,而含505個周期,所以在上有3個根,設(shè),,易知在上單調(diào)遞減,在,上單調(diào)遞增,又,.若時,在上無根,在必有3個根,則,即,此時;若時,在上有1個根,注意到,此時在不可能有2個根,故不滿足;若時,要使在有2個根,只需,解得;若時,在上單調(diào)遞增,最多只有1個零點,不滿足題意;綜上,實數(shù)的范圍為.故答案為:【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點個數(shù)問題,涉及到函數(shù)的周期性、分類討論函數(shù)的零點,是一道中檔題.15、【解析】

求出雙曲線的漸近線方程,右準線方程,得到交點坐標代入拋物線方程求解即可.【詳解】解:雙曲線的右準線,漸近線,雙曲線的右準線與漸近線的交點,交點在拋物線上,可得:,解得.故答案為.【點睛】本題考查雙曲線的簡單性質(zhì)以及拋物線的簡單性質(zhì)的應(yīng)用,是基本知識的考查,屬于基礎(chǔ)題.16、3-260【解析】

(1)令求得所有項的系數(shù)和;(2)先求出展開式中的常數(shù)項與含的系數(shù),再求展開式中的常數(shù)項.【詳解】將代入,得所有項的系數(shù)和為3.因為的展開式中含的項為,的展開式中含常數(shù)項,所以的展開式中的常數(shù)項為.故答案為:3;-260【點睛】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據(jù)正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據(jù),選擇,所以當?shù)拿娣e取得最大值時,最大,結(jié)合(1)中條件,即可求出最大時,對應(yīng)的的值,再根據(jù)余弦定理求出邊,進而得到的周長.【詳解】(1)由,得,即.因為,所以.由,得.(2)因為,所以,當且僅當時,等號成立.因為的面積.所以當時,的面積取得最大值,此時,則,所以的周長為.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運算能力.18、(1)證明見解析(2)【解析】

(1)由得令可得,進而得到,同理,利用數(shù)量積坐標計算即可;(2),分,兩種情況討論即可.【詳解】(1)證明:點的坐標為.聯(lián)立方程,消去后整理為有,可得,,.可得點的坐標為.當時,可求得點的坐標為,,.有,故有.(2)若點在軸上方,因為,所以有,由(1)知①因為時.由(1)知,由函數(shù)單調(diào)遞增,可得此時.②當時,由(1)知令由,故當時,,此時函數(shù)單調(diào)遞增:當時,,此時函數(shù)單調(diào)遞減,又由,故函數(shù)的最小值,函數(shù)取最小值時,可求得.由①②知,若點在軸上方,當?shù)拿娣e最小時,直線的斜率為.【點睛】本題考查直線與橢圓的位置關(guān)系,涉及到分類討論求函數(shù)的最值,考查學(xué)生的運算求解能力,是一道難題.19、(1);(2)(i),;(ii).【解析】

(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關(guān)于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關(guān)系式為,.(ii)當觀賞角度的最大時,取得最小值.在中,由余弦定理可得,因為的最大值不小于,所以,解得,經(jīng)驗證知,所以.即兩處噴泉間距離的最小值為.【點睛】本題考查解三角形在實際中的應(yīng)用,解題時要注意把條件轉(zhuǎn)化為三角形的邊或角,然后借助正余弦定理進行求解.解題時要注意三角形邊角關(guān)系的運用,同時還要注意所得結(jié)果要符合實際意義.20、(1);(2).【解析】

(1)先求出角,進而可得出,則①②中有且只有一個正確,③正確,然后分①③正確和②③正確兩種情況討論,結(jié)合三角形的面積公式和余弦定理可求得的值;(2)計算出和,計算出,可得出,進而可求得的面積.【詳解】(1)因為,所以,得,,,為鈍角,與矛盾,故①②中僅有一個正確,③正確.顯然,得.當①③正確時,由,得(無解);當②③正確時,由于,,得;(2)如圖,因為,,則,則,.【點睛】本題考查解三角形綜合應(yīng)用,涉及三角形面積公式和余弦定理的應(yīng)用,考查計算能力,屬于中等題.21、(1);(2)【解析】

(1)由已知條件和正弦定理進行邊角互化得,再根據(jù)余弦定理可求得值.(2)由正弦定理得,,代入得,運用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設(shè)外接圓的半徑為,則由正弦定理得,,,.【點睛】本題考查運

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論