概率論與數(shù)理統(tǒng)計(jì)測試題二_第1頁
概率論與數(shù)理統(tǒng)計(jì)測試題二_第2頁
概率論與數(shù)理統(tǒng)計(jì)測試題二_第3頁
概率論與數(shù)理統(tǒng)計(jì)測試題二_第4頁
概率論與數(shù)理統(tǒng)計(jì)測試題二_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

《概率論與數(shù)理統(tǒng)計(jì)》測試題二一、填空題(每小題3分,共15分)設(shè)事件僅發(fā)生一個的概率為0.3,且,則至少有一個不發(fā)生的概率為__________.設(shè)隨機(jī)變量服從泊松分布,且,則______.設(shè)隨機(jī)變量在區(qū)間上服從均勻分布,則隨機(jī)變量在區(qū)間內(nèi)的概率密度為_________.設(shè)隨機(jī)變量相互獨(dú)立,且均服從參數(shù)為的指數(shù)分布,,則_________,=_________.設(shè)總體的概率密度為.是來自的樣本,則未知參數(shù)的極大似然估計(jì)量為_________.二、單項(xiàng)選擇題(每小題3分,共15分)1.設(shè)為三個事件,且相互獨(dú)立,則以下結(jié)論中不正確的是(A)若,則與也獨(dú)立.(B)若,則與也獨(dú)立.(C)若,則與也獨(dú)立.(D)若,則與也獨(dú)立.()2.設(shè)隨機(jī)變量的分布函數(shù)為,則的值為(A).(B).(C).(D).()3.設(shè)隨機(jī)變量和不相關(guān),則下列結(jié)論中正確的是(A)與獨(dú)立.(B).(C).(D).()4.設(shè)離散型隨機(jī)變量和的聯(lián)合概率分布為若獨(dú)立,則的值為(A).(A).(C)(D).()5.設(shè)總體的數(shù)學(xué)期望為為來自的樣本,則下列結(jié)論中正確的是(A)是的無偏估計(jì)量.(B)是的極大似然估計(jì)量.(C)是的相合(一致)估計(jì)量.(D)不是的估計(jì)量.()三、(7分)已知一批產(chǎn)品中90%是合格品,檢查時,一個合格品被誤認(rèn)為是次品的概率為0.05,一個次品被誤認(rèn)為是合格品的概率為0.02,求(1)一個產(chǎn)品經(jīng)檢查后被認(rèn)為是合格品的概率;(2)一個經(jīng)檢查后被認(rèn)為是合格品的產(chǎn)品確是合格品的概率.四、(12分)從學(xué)校乘汽車到火車站的途中有3個交通崗,假設(shè)在各個交通崗遇到紅燈的事件是相互獨(dú)立的,并且概率都是2/5.設(shè)為途中遇到紅燈的次數(shù),求的分布列、分布函數(shù)、數(shù)學(xué)期望和方差.五、(10分)設(shè)二維隨機(jī)變量在區(qū)域上服從均勻分布.求(1)關(guān)于的邊緣概率密度;(2)的分布函數(shù)與概率密度.xy012六、(10分)向一目標(biāo)射擊,目標(biāo)中心為坐標(biāo)原點(diǎn),已知命中點(diǎn)的橫坐標(biāo)和縱坐標(biāo)相互獨(dú)立,且均服從分布.求(1)命中環(huán)形區(qū)域的概率;(2)命中點(diǎn)到目標(biāo)中心距離的數(shù)學(xué)期望.xy012七、(11分)設(shè)某機(jī)器生產(chǎn)的零件長度(單位:cm),今抽取容量為16的樣本,測得樣本均值,樣本方差.(1)求的置信度為0.95的置信區(qū)間;(2)檢驗(yàn)假設(shè)(顯著性水平為0.05).(附注)《概率論與數(shù)理統(tǒng)計(jì)》期末試題(2)與解答一、填空題(每小題3分,共15分)設(shè)事件僅發(fā)生一個的概率為0.3,且,則至少有一個不發(fā)生的概率為__________.設(shè)隨機(jī)變量服從泊松分布,且,則______.設(shè)隨機(jī)變量在區(qū)間上服從均勻分布,則隨機(jī)變量在區(qū)間內(nèi)的概率密度為_________.設(shè)隨機(jī)變量相互獨(dú)立,且均服從參數(shù)為的指數(shù)分布,,則_________,=_________.設(shè)總體的概率密度為.是來自的樣本,則未知參數(shù)的極大似然估計(jì)量為_________.解:1.即所以.2.由知即解得,故.3.設(shè)的分布函數(shù)為的分布函數(shù)為,密度為則因?yàn)椋裕垂柿斫庠谏虾瘮?shù)嚴(yán)格單調(diào),反函數(shù)為所以4.,故.5.似然函數(shù)為解似然方程得的極大似然估計(jì)為.二、單項(xiàng)選擇題(每小題3分,共15分)1.設(shè)為三個事件,且相互獨(dú)立,則以下結(jié)論中不正確的是(A)若,則與也獨(dú)立.(B)若,則與也獨(dú)立.(C)若,則與也獨(dú)立.(D)若,則與也獨(dú)立.()2.設(shè)隨機(jī)變量的分布函數(shù)為,則的值為(A).(B).(C).(D).()3.設(shè)隨機(jī)變量和不相關(guān),則下列結(jié)論中正確的是(A)與獨(dú)立.(B).(C).(D).()4.設(shè)離散型隨機(jī)變量和的聯(lián)合概率分布為若獨(dú)立,則的值為(A).(A).(C)(D).()5.設(shè)總體的數(shù)學(xué)期望為為來自的樣本,則下列結(jié)論中正確的是(A)是的無偏估計(jì)量.(B)是的極大似然估計(jì)量.(C)是的相合(一致)估計(jì)量.(D)不是的估計(jì)量.()解:1.因?yàn)楦怕蕿?的事件和概率為0的事件與任何事件獨(dú)立,所以(A),(B),(C)都是正確的,只能選(D).SASABC2.所以應(yīng)選(A).3.由不相關(guān)的等價條件知應(yīng)選(B).4.若獨(dú)立則有YXYX,故應(yīng)選(A).5.,所以是的無偏估計(jì),應(yīng)選(A).三、(7分)已知一批產(chǎn)品中90%是合格品,檢查時,一個合格品被誤認(rèn)為是次品的概率為0.05,一個次品被誤認(rèn)為是合格品的概率為0.02,求(1)一個產(chǎn)品經(jīng)檢查后被認(rèn)為是合格品的概率;(2)一個經(jīng)檢查后被認(rèn)為是合格品的產(chǎn)品確是合格品的概率.解:設(shè)‘任取一產(chǎn)品,經(jīng)檢驗(yàn)認(rèn)為是合格品’‘任取一產(chǎn)品確是合格品’則(1)(2).四、(12分)從學(xué)校乘汽車到火車站的途中有3個交通崗,假設(shè)在各個交通崗遇到紅燈的事件是相互獨(dú)立的,并且概率都是2/5.設(shè)為途中遇到紅燈的次數(shù),求的分布列、分布函數(shù)、數(shù)學(xué)期望和方差.解:的概率分布為即的分布函數(shù)為.五、(10分)設(shè)二維隨機(jī)變量在區(qū)域上服從均勻分布.求(1)關(guān)于的邊緣概率密度;(2)的分布函數(shù)與概率密度.1D01z1D01zxyx+y=1x+y=zD1(2)利用公式其中當(dāng)或時xzz=xxzz=x故的概率密度為的分布函數(shù)為或利用分布函數(shù)法六、(10分)向一目標(biāo)射擊,目標(biāo)中心為坐標(biāo)原點(diǎn),已知命中點(diǎn)的橫坐標(biāo)和縱坐標(biāo)相互獨(dú)立,且均服從分布.求(1)命中環(huán)形區(qū)域的概率;(2)命中點(diǎn)到目標(biāo)中心距離的數(shù)學(xué)期望.xy012xy012;(2).七、(11分)設(shè)某機(jī)器生產(chǎn)的零件長度(單位:cm),今抽取容量為16的樣本,測得樣本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論