2025屆湖南省懷化市中方縣二中高一數(shù)學第二學期期末聯(lián)考試題含解析_第1頁
2025屆湖南省懷化市中方縣二中高一數(shù)學第二學期期末聯(lián)考試題含解析_第2頁
2025屆湖南省懷化市中方縣二中高一數(shù)學第二學期期末聯(lián)考試題含解析_第3頁
2025屆湖南省懷化市中方縣二中高一數(shù)學第二學期期末聯(lián)考試題含解析_第4頁
2025屆湖南省懷化市中方縣二中高一數(shù)學第二學期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖南省懷化市中方縣二中高一數(shù)學第二學期期末聯(lián)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設等差數(shù)列an的前n項和為Sn,若a1>0,A.S10 B.S11 C.S2.高一數(shù)學興趣小組共有5人,編號為.若從中任選3人參加數(shù)學競賽,則選出的參賽選手的編號相連的概率為()A. B. C. D.3.已知甲、乙兩組數(shù)據(jù)用莖葉圖表示如圖所示,若它們的中位數(shù)相同,平均數(shù)也相同,則圖中的的比值等于A. B. C. D.4.等差數(shù)列中,,且,且,是其前項和,則下列判斷正確的是()A.、、均小于,、、、均大于B.、、、均小于,、、均大于C.、、、均小于,、、均大于D.、、、均小于,、、均大于5.已知,且,那么a,b,,的大小關系是()A. B.C. D.6.已知底面邊長為1,側棱長為2的正四棱柱的各頂點均在同一個球面上,則該球的體積為()A. B. C. D.7.直線的傾斜角為()A. B. C. D.8.在中,,則的形狀為()A.直角三角形 B.等腰三角形 C.鈍角三角形 D.正三角形9.若a<b,則下列不等式中正確的是()A.a2<b2 B. C.a2+b2>2ab D.ac2<bc210.在等差數(shù)列中,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知點P是矩形ABCD邊上的一動點,,,則的取值范圍是________.12._______________。13.如果數(shù)據(jù)的平均數(shù)是,則的平均數(shù)是________.14.等差數(shù)列滿足,則其公差為__________.15.已知,,若,則的取值范圍是__________.16.在等比數(shù)列中,,,則_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,,且與的夾角為.(1)求在上的投影;(2)求.18.在平面直角坐標系中,已知.(1)求的值;(2)若,求的值.19.已知函數(shù)()的一段圖象如圖所示.(1)求函數(shù)的解析式;(2)若,求函數(shù)的值域.20.為了了解居民的用電情況,某地供電局抽查了該市若干戶居民月均用電量(單位:),并將樣本數(shù)據(jù)分組為,,,,,,,其頻率分布直方圖如圖所示.(1)若樣本中月均用電量在的居民有戶,求樣本容量;(2)求月均用電量的中位數(shù);(3)在月均用電量為,,,的四組居民中,用分層隨機抽樣法抽取戶居民,則月均用電量在的居民應抽取多少戶?21.設為等差數(shù)列的前項和,已知,.(1)求數(shù)列的通項公式;(2)令,且數(shù)列的前項和為,求證:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】分析:利用等差數(shù)列的通項公式,化簡求得a20+a詳解:在等差數(shù)列an中,a則3(a1+7d)=5(a1所以a20又由a1>0,所以a20>0,a21<0點睛:本題考查了等差數(shù)列的通項公式,及等差數(shù)列的前n項和Sn的性質,其中解答中根據(jù)等差數(shù)列的通項公式,化簡求得a20+2、A【解析】

先考慮從個人中選取個人參加數(shù)學競賽的基本事件總數(shù),再分析選出的參賽選手的編號相連的事件數(shù),根據(jù)古典概型的概率計算得到結果.【詳解】因為從個人中選取個人參加數(shù)學競賽的基本事件有:,共種,又因為選出的參賽選手的編號相連的事件有:,共種,所以目標事件的概率為.故選:A.【點睛】本題考查古典概型的簡單應用,難度較易.求解古典概型問題的常規(guī)思路:先計算出基本事件的總數(shù),然后計算出目標事件的個數(shù),目標事件的個數(shù)比上基本事件的總數(shù)即可計算出對應的概率.3、A【解析】

從莖葉圖提取甲、乙兩組數(shù)據(jù)中的原始數(shù)據(jù),并按從小到大排列,分別得到中位數(shù),并計算各自的平均數(shù),再根據(jù)中位數(shù)、平均值相等得到關于的方程.【詳解】甲組數(shù)據(jù):,中位數(shù)為,乙組數(shù)據(jù):,中位數(shù)為:,所以,所以,故選A.【點睛】本題考查中位數(shù)、平均數(shù)的概念與計算,對甲組數(shù)據(jù)排序時,一定是最大,乙組數(shù)據(jù)中一定是最小.4、C【解析】

由,且可得,,,,結合等差數(shù)列的求和公式即等差數(shù)列的性質即可判斷.【詳解】,且,,數(shù)列的前項都是負數(shù),,,,由等差數(shù)列的求和公式可得,,由公差可知,、、、均小于,、、均大于.故選:C.【點睛】本題考查等差數(shù)列前項和符號的判斷,解題時要充分結合等差數(shù)列下標和的性質以及等差數(shù)列求和公式進行計算,考查分析問題和解決問題的能力,屬于中等題.5、D【解析】

直接用作差法比較它們的大小得解.【詳解】;;.故.故選:D【點睛】本題主要考查了作差法比較實數(shù)的大小,意在考查學生對這些知識的理解掌握水平,屬于基礎題.6、C【解析】

根據(jù)題意可知所求的球為正四棱柱的外接球,根據(jù)正四棱柱的特點利用勾股定理可求得外接球半徑,代入球的體積公式求得結果.【詳解】由題意可知所求的球為正四棱柱的外接球底面正方形對角線長為:外接球半徑外接球體積本題正確選項:【點睛】本題考查正棱柱外接球體積的求解問題,關鍵是能夠根據(jù)正棱柱的特點確定球心位置,從而利用勾股定理求得外接球半徑.7、C【解析】

求出直線的斜率,然后求解直線的傾斜角.【詳解】由題意知,直線的斜率為,所以直線的傾斜角為.故選:C.【點睛】本題考查直線的斜率與傾斜角的求法,屬于基礎題.8、A【解析】

在中,由,變形為,再利用內角和轉化為,通過兩角和的正弦展開判斷.【詳解】在中,因為,所以,所以,所以,所以,所以直角三角形.故選:A【點睛】本題主要考查了利用三角恒等變換判斷三角形的形狀,還考查了運算求解的能力,屬于基礎題.9、C【解析】

利用特殊值對錯誤選項進行排除,然后證明正確的不等式.【詳解】取代入驗證可知,A、D選項錯誤;取代入驗證可知,B選項錯誤.對于C選項,由于,所以,即成立.故選:C【點睛】本小題主要考查不等式的性質,屬于基礎題.10、B【解析】

利用等差中項的性質得出關于的等式,可解出的值.【詳解】由等差中項的性質可得,由于,即,即,解得,故選:B.【點睛】本題考查等差中項性質的應用,解題時充分利用等差中項的性質進行計算,可簡化計算,考查運算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

如圖所示,以為軸,為軸建立直角坐標系,故,,設.,根據(jù)幾何意義得到最值,【詳解】如圖所示:以為軸,為軸建立直角坐標系,故,,設.則.表示的幾何意義為到點的距離的平方減去.根據(jù)圖像知:當為或的中點時,有最小值為;當與中的一點時有最大值為.故答案為:.【點睛】本題考查了向量的數(shù)量積的范圍,轉化為幾何意義是解題關鍵.12、【解析】

本題首先可根據(jù)同角三角函數(shù)關系式化簡得出,然后根據(jù)兩角差的正弦公式化簡得出,最后根據(jù)二倍角公式以及三角函數(shù)誘導公式即可得出結果。【詳解】,故答案為【點睛】本題考查根據(jù)三角函數(shù)相關公式進行化簡求值,考查到的公式有、、以及,考查化歸與轉化思想,是中檔題。13、5【解析】

根據(jù)平均數(shù)的定義計算.【詳解】由題意,故答案為:5.【點睛】本題考查求新數(shù)據(jù)的均值.掌握均值定義是解題關鍵.實際上如果數(shù)據(jù)的平均數(shù)是,則新數(shù)據(jù)的平均數(shù)是.14、【解析】

首先根據(jù)等差數(shù)列的性質得到,再根據(jù)即可得到公差的值.【詳解】,解得.,所以.故答案為:【點睛】本題主要考查等差數(shù)列的性質,熟記公式為解題的關鍵,屬于簡單題.15、【解析】數(shù)形結合法,注意y=,y≠0等價于x2+y2=9(y>0),它表示的圖形是圓x2+y2=9在x軸之上的部分(如圖所示).結合圖形不難求得,當-3<b≤3時,直線y=x+b與半圓x2+y2=9(y>0)有公共點.16、1【解析】

由等比數(shù)列的性質可得,結合通項公式可得公比q,從而可得首項.【詳解】根據(jù)題意,等比數(shù)列中,其公比為,,則,解可得,又由,則有,則,則;故答案為:1.【點睛】本題考查等比數(shù)列的通項公式以及等比數(shù)列性質(其中m+n=p+q)的應用,也可以利用等比數(shù)列的基本量來解決.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)-2.(2).【解析】分析:(1)根據(jù)題中所給的條件,利用向量的數(shù)量積的定義式,求得,之后應用投影公式,在上的投影為,求得結果;(2)應用向量模的平方等于向量的平方,之后應用公式求得結果.詳解:(1)在上的投影為(2)因為,,且與的夾角為所以所以點睛:該題考查的是有關向量的投影以及向量模的計算問題,在解題的過程中,涉及到的知識點有向量的數(shù)量積的定義式,投影公式,向量模的平方和向量的平方是相等的,靈活運用公式求得結果.18、(1);(2).【解析】

(1)由,得到,再結合向量的模的運算公式,即可求解.(2)因為,得到,求得,結合正切的倍角公式,即可求解.【詳解】(1)由題意知,所以,因此;(2)因為,所以,即,因此.【點睛】本題主要考查了向量的坐標運算,向量的模的求解,以及向量的垂直的條件的應用和正切的倍角公式的化簡求值等,著重考查了推理與計算能力,屬于基礎題.19、(1);(2)【解析】

(1)由函數(shù)的一段圖象求得、、和的值即可;(2)由,求得的取值范圍,再利用正弦函數(shù)的性質求得的最大和最小值即可.【詳解】解:(1)由函數(shù)的一段圖象知,,,,解得,又時,,,,解得,;,函數(shù)的解析式為;(2)當時,,令,解得,此時取得最大值為2;令,解得,此時取得最小值為;函數(shù)的值域為.【點睛】本題考查了函數(shù)的圖象和性質的應用問題,屬于基礎題.20、(1)200(2)224(3)4戶【解析】

(1)因為,所以月均用電量在的頻率為,即可求得答案;(2)因為,設中位數(shù)為,,即可求得答案;(3)月均用電量為,,,的頻率分別為,即可求得答案.【詳解】(1),得.月均用電量在的頻率為.設樣本容量為N,則,.(2),月均用電量的中位數(shù)在內.設中位數(shù)為,,解得,即中位數(shù)為.(3)月均用電量為,,,的頻率分別為應從月均用電量在的用戶中抽取(戶)【點睛】本題考查了用樣本估計總體的相關計算,解題關鍵是掌握分層抽樣的計算方法和樣本容量,中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論