版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知甲盒子中有個紅球,個藍(lán)球,乙盒子中有個紅球,個藍(lán)球,同時從甲乙兩個盒子中取出個球進(jìn)行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數(shù)記為.則()A. B.C. D.2.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則3.函數(shù)在上單調(diào)遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)4.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.5.設(shè)集合,,則().A. B.C. D.6.已知集合,集合,那么等于()A. B. C. D.7.執(zhí)行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.8.設(shè),其中a,b是實數(shù),則()A.1 B.2 C. D.9.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行10.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.11.設(shè)為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標(biāo)為,則該雙曲線的標(biāo)準(zhǔn)方程可能為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.關(guān)于函數(shù)有下列四個命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關(guān)于中心對稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導(dǎo)函數(shù)不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)14.設(shè)函數(shù),則滿足的的取值范圍為________.15.已知實數(shù)滿足(為虛數(shù)單位),則的值為_______.16.若,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),曲線在點處的切線在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設(shè),求證:.18.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍;(2)若,求的最大值.19.(12分)在中,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.20.(12分)設(shè)等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求的前項和及使得最小的的值.21.(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當(dāng),且時,求的面積.22.(10分)已知函數(shù).(1)設(shè),求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點.(2)若函數(shù)在區(qū)間上不單調(diào),證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分析:首先需要去分析交換后甲盒中的紅球的個數(shù),對應(yīng)的事件有哪些結(jié)果,從而得到對應(yīng)的概率的大小,再者就是對隨機變量的值要分清,對應(yīng)的概率要算對,利用公式求得其期望.詳解:根據(jù)題意有,如果交換一個球,有交換的都是紅球、交換的都是藍(lán)球、甲盒的紅球換的乙盒的藍(lán)球、甲盒的藍(lán)球交換的乙盒的紅球,紅球的個數(shù)就會出現(xiàn)三種情況;如果交換的是兩個球,有紅球換紅球、藍(lán)球換藍(lán)球、一藍(lán)一紅換一藍(lán)一紅、紅換藍(lán)、藍(lán)換紅、一藍(lán)一紅換兩紅、一藍(lán)一紅換亮藍(lán),對應(yīng)的紅球的個數(shù)就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關(guān)隨機事件的概率以及對應(yīng)的期望的問題,在解題的過程中,需要對其對應(yīng)的事件弄明白,對應(yīng)的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結(jié)果.2、D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.3、B【解析】
根據(jù)題意分析的圖像關(guān)于直線對稱,即可得到的單調(diào)區(qū)間,利用對稱性以及單調(diào)性即可得到的取值范圍?!驹斀狻扛鶕?jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關(guān)于直線對稱,若函數(shù)在上單調(diào)遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點睛】本題考查偶函數(shù)的性質(zhì),以及函數(shù)單調(diào)性的應(yīng)用,有一定綜合性,屬于中檔題。4、B【解析】
根據(jù)焦點所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設(shè)雙曲線的方程為,一個焦點為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B【點睛】此題考查根據(jù)雙曲線的漸近線和焦點求解雙曲線的標(biāo)準(zhǔn)方程,易錯點在于漏掉考慮焦點所在坐標(biāo)軸導(dǎo)致方程形式出錯.5、D【解析】
根據(jù)題意,求出集合A,進(jìn)而求出集合和,分析選項即可得到答案.【詳解】根據(jù)題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,6、A【解析】
求出集合,然后進(jìn)行并集的運算即可.【詳解】∵,,∴.故選:A.【點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎(chǔ)題.7、C【解析】
框圖的功能是求等比數(shù)列的和,直到和不滿足給定的值時,退出循環(huán),輸出n.【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;第四次循環(huán):;此時滿足輸出結(jié)果,故.故選:C.【點睛】本題考查程序框圖的應(yīng)用,建議數(shù)據(jù)比較小時,可以一步一步的書寫,防止錯誤,是一道容易題.8、D【解析】
根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復(fù)數(shù)模的計算,考驗計算,屬基礎(chǔ)題.9、B【解析】
根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個選項得到答案.【詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當(dāng),不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.10、C【解析】
由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進(jìn)而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎(chǔ)知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.11、A【解析】
利用復(fù)數(shù)的除法運算化簡,求得對應(yīng)的坐標(biāo),由此判斷對應(yīng)點所在象限.【詳解】,對應(yīng)的點的坐標(biāo)為,位于第一象限.故選:A.【點睛】本小題主要考查復(fù)數(shù)除法運算,考查復(fù)數(shù)對應(yīng)點所在象限,屬于基礎(chǔ)題.12、A【解析】
直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項求解即可【詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A【點睛】本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標(biāo)準(zhǔn)方程,考查運算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】
由單調(diào)性、對稱性概念、導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值的關(guān)系進(jìn)行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關(guān)于中心對稱,②正確;,時取等號,∴③正確;,設(shè),則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數(shù)的單調(diào)性、對稱性,考查導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值,解題時按照相關(guān)概念判斷即可,屬于中檔題.14、【解析】
當(dāng)時,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)為常數(shù),故需滿足,且,解得答案.【詳解】,當(dāng)時,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)為常數(shù),需滿足,且,解得.故答案為:.【點睛】本題考查了根據(jù)函數(shù)單調(diào)性解不等式,意在考查學(xué)生對于函數(shù)性質(zhì)的靈活運用.15、【解析】
由虛數(shù)單位的性質(zhì)結(jié)合復(fù)數(shù)相等的條件列式求得,的值,則答案可求.【詳解】解:由,,,所以,得,..故答案為:.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查虛數(shù)單位的性質(zhì),屬于基礎(chǔ)題.16、【解析】
由已知利用兩角差的正弦函數(shù)公式可得,兩邊平方,由同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式即可計算得解.【詳解】,得,在等式兩邊平方得,解得.故答案為:.【點睛】本題主要考查了兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)為減函數(shù),為增函數(shù).(3)證明見解析【解析】
(1)求出導(dǎo)函數(shù),求出切線方程,令得切線的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的正負(fù)確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結(jié)論.【詳解】解:(1)對求導(dǎo),得.因此.又因為,所以曲線在點處的切線方程為,即.由題意,.顯然,適合上式.令,求導(dǎo)得,因此為增函數(shù):故是唯一解.(2)由(1)可知,,因為,所以為減函數(shù).因為,所以為增函數(shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因此,當(dāng)時,,即.令,得,即.因此,當(dāng)時,.所以成立.下面證明:.由(2)可知,在上為增函數(shù).因此,當(dāng)時,,即.因此,即.令,得,即.當(dāng)時,.因為,所以,所以.所以,當(dāng)時,.所以,當(dāng)時,成立.綜上所述,當(dāng)時,成立.【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式.本題中不等式的證明,考查了轉(zhuǎn)化與化歸的能力,把不等式變形后利用第(2)小題函數(shù)的單調(diào)性得出數(shù)列的不等關(guān)系:,.這是最關(guān)鍵的一步.然后一步一步放縮即可證明.本題屬于困難題.18、(1)(2)【解析】
(1)根據(jù)單調(diào)遞減可知導(dǎo)函數(shù)恒小于等于,采用參變分離的方法分離出,并將的部分構(gòu)造成新函數(shù),分析與最值之間的關(guān)系;(2)通過對的導(dǎo)函數(shù)分析,確定有唯一零點,則就是的極大值點也是最大值點,計算的值并利用進(jìn)行化簡,從而確定.【詳解】(1)由題意知,在上恒成立,所以在上恒成立.令,則,所以在上單調(diào)遞增,所以,所以.(2)當(dāng)時,.則,令,則,所以在上單調(diào)遞減.由于,,所以存在滿足,即.當(dāng)時,,;當(dāng)時,,.所以在上單調(diào)遞增,在上單調(diào)遞減.所以,因為,所以,所以,所以.【點睛】(1)求函數(shù)中字母的范圍時,常用的方法有兩種:參變分離法、分類討論法;(2)當(dāng)導(dǎo)函數(shù)不易求零點時,需要將導(dǎo)函數(shù)中某些部分拿出作單獨分析,以便先確定導(dǎo)函數(shù)的單調(diào)性從而確定導(dǎo)函數(shù)的零點所在區(qū)間,再分析整個函數(shù)的單調(diào)性,最后確定出函數(shù)的最值.19、(1);(2).【解析】試題分析:(1)由正弦定理得到.消去公因式得到所以.進(jìn)而得到角A;(2)結(jié)合三角形的面積公式,和余弦定理得到,聯(lián)立兩式得到.解析:(I)因為,所以,由正弦定理,得.又因為,,所以.又因為,所以.(II)由,得,由余弦定理,得,即,因為,解得.因為,所以.20、(1)(2);時,取得最小值【解析】
(1)設(shè)等差數(shù)列的公差為,由,結(jié)合已知,聯(lián)立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設(shè)等差數(shù)列的公差為,由及,得解得數(shù)列的通項公式為(2)由(1)知時,取得最小值.【點睛】本題解題關(guān)鍵是掌握等差數(shù)列通項公式和前項和公式,考查了分析能力和計算能力,屬于基礎(chǔ)題.21、(1);(2)【解析】
(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計算得出.【詳解】(1)由已知可得,所以,因為在銳角中,,所以(2)因為,所以,因為是銳角三角形,所以,所以.由正弦定理可得:,所以,所以【點睛】此類問題是高考的??碱}型,主要考查了正弦定理、三角函數(shù)以及三角恒等變換等知識,同時考查了學(xué)生的基本運算能力和利用三角公式進(jìn)行恒等變換的技能,屬于中檔題.22、(1)為增區(qū)間;為減區(qū)間.見解析(2)見解析【解析】
(1)先求得的定義域,然后利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合零點存在性定理判斷出有唯一零點.(2)求得的導(dǎo)函數(shù),結(jié)合在區(qū)間上不單調(diào),證得,通過證明,證得成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 橋梁景觀照明施工方案
- 補水大作戰(zhàn) 找回肌膚的水潤
- 山西預(yù)制化糞池施工方案
- 消防泵房閥門更換施工方案
- 2025年鑄鍛鋼材項目可行性研究報告
- 裝修分期投標(biāo)方案
- 全屋整裝售后質(zhì)保合同范本
- 湖北水利水電職業(yè)技術(shù)學(xué)院《國防土木工程導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 漯河2024年河南漯河市文化廣電和旅游局人才引進(jìn)15人筆試歷年參考題庫附帶答案詳解
- 渭南2025年陜西渭南市事業(yè)單位招聘191人筆試歷年參考題庫附帶答案詳解
- 港口流體裝卸工職業(yè)技能競賽理論考試題庫500題(含答案)
- QCT1067.5-2023汽車電線束和電器設(shè)備用連接器第5部分:設(shè)備連接器(插座)的型式和尺寸
- 輪式智能移動操作機器人技術(shù)與應(yīng)用-基于ROS的Python編程 課件 第4章 機器人運動應(yīng)用實例
- 2024質(zhì)量管理理解、評價和改進(jìn)組織的質(zhì)量文化指南
- 手指外傷后護理查房
- 油氣回收相關(guān)理論知識考試試題及答案
- 我能作業(yè)更細(xì)心(課件)-小學(xué)生主題班會二年級
- 2023年湖北省武漢市高考數(shù)學(xué)一模試卷及答案解析
- 英國足球文化課件
- 《行政職業(yè)能力測驗》2023年公務(wù)員考試新疆維吾爾新疆生產(chǎn)建設(shè)兵團可克達(dá)拉市預(yù)測試題含解析
- 醫(yī)院投訴案例分析及處理要點
評論
0/150
提交評論