版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年山東德州七中學中考數(shù)學模擬精編試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.的值是()A.1 B.﹣1 C.3 D.﹣32.如圖,AB是一垂直于水平面的建筑物,某同學從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經(jīng)過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米3.已知二次函數(shù)y=(x+a)(x﹣a﹣1),點P(x0,m),點Q(1,n)都在該函數(shù)圖象上,若m<n,則x0的取值范圍是()A.0≤x0≤1 B.0<x0<1且x0≠C.x0<0或x0>1 D.0<x0<14.如圖,在半徑為5的⊙O中,弦AB=6,點C是優(yōu)弧上一點(不與A,B重合),則cosC的值為()A. B. C. D.5.甲、乙兩人同時分別從A,B兩地沿同一條公路騎自行車到C地.已知A,C兩地間的距離為110千米,B,C兩地間的距離為100千米.甲騎自行車的平均速度比乙快2千米/時.結(jié)果兩人同時到達C地.求兩人的平均速度,為解決此問題,設(shè)乙騎自行車的平均速度為x千米/時.由題意列出方程.其中正確的是()A. B. C. D.6.如圖,已知菱形ABCD的對角線AC.BD的長分別為6cm、8cm,AE⊥BC于點E,則AE的長是()A. B. C. D.7.已知關(guān)于x的方程恰有一個實根,則滿足條件的實數(shù)a的值的個數(shù)為()A.1 B.2 C.3 D.48.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.9.已知兩點都在反比例函數(shù)圖象上,當時,,則的取值范圍是()A. B. C. D.10.如圖,在中,邊上的高是()A. B. C. D.11.下列函數(shù)是二次函數(shù)的是()A. B. C. D.12.已知二次函數(shù)y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關(guān)系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知線段AB=2cm,點C在線段AB上,且AC2=BC·AB,則AC的長___________cm.14.若使代數(shù)式有意義,則x的取值范圍是_____.15.在直角坐標系平面內(nèi),拋物線y=3x2+2x在對稱軸的左側(cè)部分是_____的(填“上升”或“下降”)16.方程的解是_____.17.一個不透明的袋子中裝有5個球,其中3個紅球、2個黑球,這些球除顏色外無其它差別,現(xiàn)從袋子中隨機摸出一個球,則它是黑球的概率是_____.18.如圖,在平面直角坐標系xOy中,點A,P分別在x軸、y軸上,∠APO=30°.先將線段PA沿y軸翻折得到線段PB,再將線段PA繞點P順時針旋轉(zhuǎn)30°得到線段PC,連接BC.若點A的坐標為(﹣1,0),則線段BC的長為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,拋物線y1=ax1﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y1.(1)求拋物線y1的解析式;(1)如圖1,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y1于點Q,點Q關(guān)于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.20.(6分)為營造濃厚的創(chuàng)建全國文明城市氛圍,東營市某中學委托制衣廠制作“最美東營人”和“最美志愿者”兩款文化衫.若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需145元.(1)求“最美東營人”和“最美志愿者”兩款文化衫每件各多少元?(2)若該中學要購進“最美東營人”和“最美志愿者”兩款文化衫共90件,總費用少于1595元,并且“最美東營人”文化衫的數(shù)量少于“最美志愿者”文化衫的數(shù)量,那么該中學有哪幾種購買方案?21.(6分)已知如圖,在△ABC中,∠B=45°,點D是BC邊的中點,DE⊥BC于點D,交AB于點E,連接CE.(1)求∠AEC的度數(shù);(2)請你判斷AE、BE、AC三條線段之間的等量關(guān)系,并證明你的結(jié)論.22.(8分)為落實黨中央“長江大保護”新發(fā)展理念,我市持續(xù)推進長江岸線保護,還洞庭湖和長江水清岸綠的自然生態(tài)原貌.某工程隊負責對一面積為33000平方米的非法砂石碼頭進行拆除,回填土方和復(fù)綠施工,為了縮短工期,該工程隊增加了人力和設(shè)備,實際工作效率比原計劃每天提高了20%,結(jié)果提前11天完成任務(wù),求實際平均每天施工多少平方米?23.(8分)我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)24.(10分)(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)25.(10分)如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.(1)求∠A的度數(shù).(2)求圖中陰影部分的面積.26.(12分)如圖,已知是的直徑,點、在上,且,過點作,垂足為.求的長;若的延長線交于點,求弦、和弧圍成的圖形(陰影部分)的面積.27.(12分)在平面直角坐標系xOy中,已知兩點A(0,3),B(1,0),現(xiàn)將線段AB繞點B按順時針方向旋轉(zhuǎn)90°得到線段BC,拋物線y=ax2+bx+c經(jīng)過點C.(1)如圖1,若拋物線經(jīng)過點A和D(﹣2,0).①求點C的坐標及該拋物線解析式;②在拋物線上是否存在點P,使得∠POB=∠BAO,若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由;(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過點E(2,1),點Q在拋物線上,且滿足∠QOB=∠BAO,若符合條件的Q點恰好有2個,請直接寫出a的取值范圍.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
直接利用立方根的定義化簡得出答案.【詳解】因為(-1)3=-1,=﹣1.故選:B.【點睛】此題主要考查了立方根,正確把握立方根的定義是解題關(guān)鍵.,2、A【解析】
作BM⊥ED交ED的延長線于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根據(jù)tan24°=,構(gòu)建方程即可解決問題.【詳解】作BM⊥ED交ED的延長線于M,CN⊥DM于N.在Rt△CDN中,∵,設(shè)CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四邊形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故選A.【點睛】本題考查的是解直角三角形的應(yīng)用-仰角俯角問題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.3、D【解析】分析:先求出二次函數(shù)的對稱軸,然后再分兩種情況討論,即可解答.詳解:二次函數(shù)y=(x+a)(x﹣a﹣1),當y=0時,x1=﹣a,x2=a+1,∴對稱軸為:x==當P在對稱軸的左側(cè)(含頂點)時,y隨x的增大而減小,由m<n,得:0<x0≤;當P在對稱軸的右側(cè)時,y隨x的增大而增大,由m<n,得:<x0<1.綜上所述:m<n,所求x0的取值范圍0<x0<1.故選D.點睛:本題考查了二次函數(shù)圖象上點的坐標特征,解決本題的關(guān)鍵是利用二次函數(shù)的性質(zhì),要分類討論,以防遺漏.4、D【解析】解:作直徑AD,連結(jié)BD,如圖.∵AD為直徑,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故選D.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了解直角三角形.5、A【解析】設(shè)乙騎自行車的平均速度為x千米/時,則甲騎自行車的平均速度為(x+2)千米/時,根據(jù)題意可得等量關(guān)系:甲騎110千米所用時間=乙騎100千米所用時間,根據(jù)等量關(guān)系可列出方程即可.解:設(shè)乙騎自行車的平均速度為x千米/時,由題意得:=,故選A.6、D【解析】
根據(jù)菱形的性質(zhì)得出BO、CO的長,在RT△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故選D.點睛:此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.7、C【解析】
先將原方程變形,轉(zhuǎn)化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數(shù)根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數(shù)根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數(shù)根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應(yīng)的原方程的根.【詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數(shù)根,即△=9﹣3×2(3﹣a)=1.解得a=.當a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數(shù)根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當x=1時,代入①式得3﹣a=1,即a=3.當a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數(shù)根時,所求的a的值分別是,3,5共3個.故選C.【點睛】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進行討論.理解分式方程產(chǎn)生增根的原因及一元二次方程解的情況從而正確進行分類是解題的關(guān)鍵.8、A【解析】
根據(jù)銳角三角函數(shù)的定義得出sinB等于∠B的對邊除以斜邊,即可得出答案.【詳解】根據(jù)在△ABC中,∠C=90°,那么sinB==,故答案選A.【點睛】本題考查的知識點是銳角三角函數(shù)的定義,解題的關(guān)鍵是熟練的掌握銳角三角函數(shù)的定義.9、B【解析】
根據(jù)反比例函數(shù)的性質(zhì)判斷即可.【詳解】解:∵當x1<x2<0時,y1<y2,
∴在每個象限y隨x的增大而增大,
∴k<0,
故選:B.【點睛】本題考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì).10、D【解析】
根據(jù)三角形的高線的定義解答.【詳解】根據(jù)高的定義,AF為△ABC中BC邊上的高.故選D.【點睛】本題考查了三角形的高的定義,熟記概念是解題的關(guān)鍵.11、C【解析】
根據(jù)一次函數(shù)的定義,二次函數(shù)的定義對各選項分析判斷利用排除法求解.【詳解】A.y=x是一次函數(shù),故本選項錯誤;B.y=是反比例函數(shù),故本選項錯誤;C.y=x-2+x2是二次函數(shù),故本選項正確;D.y=右邊不是整式,不是二次函數(shù),故本選項錯誤.故答案選C.【點睛】本題考查的知識點是二次函數(shù)的定義,解題的關(guān)鍵是熟練的掌握二次函數(shù)的定義.12、D【解析】
拋物線的頂點坐標為P(?,),設(shè)A、B兩點的坐標為A(,0)、B(,0)則AB=,根據(jù)根與系數(shù)的關(guān)系把AB的長度用b、c表示,而S△APB=1,然后根據(jù)三角形的面積公式就可以建立關(guān)于b、c的等式.【詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設(shè)=s,則,故s=2,∴=2,∴.故選D.【點睛】本題主要考查了拋物線與x軸的交點情況與判別式的關(guān)系、拋物線頂點坐標公式、三角形的面積公式等知識,綜合性比較強.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
設(shè)AC=x,則BC=2-x,根據(jù)AC2=BC·AB列方程求解即可.【詳解】解:設(shè)AC=x,則BC=2-x,根據(jù)AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案為.【點睛】本題考查了黃金分割的應(yīng)用,關(guān)鍵是明確黃金分割所涉及的線段的比.14、x≠﹣2【解析】
直接利用分式有意義則其分母不為零,進而得出答案.【詳解】∵分式有意義,∴x的取值范圍是:x+2≠0,解得:x≠?2.故答案是:x≠?2.【點睛】本題考查了分式有意義的條件,解題的關(guān)鍵是熟練的掌握分式有意義的條件.15、下降【解析】
根據(jù)拋物線y=3x2+2x圖像性質(zhì)可得,在對稱軸的左側(cè)部分是下降的.【詳解】解:∵在中,,∴拋物線開口向上,∴在對稱軸左側(cè)部分y隨x的增大而減小,即圖象是下降的,故答案為下降.【點睛】本題考查二次函數(shù)的圖像及性質(zhì).根據(jù)拋物線開口方向和對稱軸的位置即可得出結(jié)論.16、1【解析】,,x=1,代入最簡公分母,x=1是方程的解.17、【解析】
用黑球的個數(shù)除以總球的個數(shù)即可得出黑球的概率.【詳解】解:∵袋子中共有5個球,有2個黑球,∴從袋子中隨機摸出一個球,它是黑球的概率為;故答案為.【點睛】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.18、22【解析】
只要證明△PBC是等腰直角三角形即可解決問題.【詳解】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=2PC=22,故答案為22.【點睛】本題考查翻折變換、坐標與圖形的變化、等腰直角三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是證明△PBC是等腰直角三角形.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y1=-x1+x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.【解析】
(1)應(yīng)用待定系數(shù)法求解析式;(1)設(shè)出點T坐標,表示△TAC三邊,進行分類討論;(3)設(shè)出點P坐標,表示Q、R坐標及PQ、QR,根據(jù)以P,Q,R為頂點的三角形與△AMG全等,分類討論對應(yīng)邊相等的可能性即可.【詳解】解:(1)由已知,c=,將B(1,0)代入,得:a﹣=0,解得a=﹣,拋物線解析式為y1=x1-x+,∵拋物線y1平移后得到y(tǒng)1,且頂點為B(1,0),∴y1=﹣(x﹣1)1,即y1=-x1+x-;(1)存在,如圖1:拋物線y1的對稱軸l為x=1,設(shè)T(1,t),已知A(﹣3,0),C(0,),過點T作TE⊥y軸于E,則TC1=TE1+CE1=11+()1=t1﹣t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,當TC=AC時,t1﹣t+=,解得:t1=,t1=;當TA=AC時,t1+16=,無解;當TA=TC時,t1﹣t+=t1+16,解得t3=﹣;當點T坐標分別為(1,),(1,),(1,﹣)時,△TAC為等腰三角形;(3)如圖1:設(shè)P(m,),則Q(m,),∵Q、R關(guān)于x=1對稱∴R(1﹣m,),①當點P在直線l左側(cè)時,PQ=1﹣m,QR=1﹣1m,∵△PQR與△AMG全等,∴當PQ=GM且QR=AM時,m=0,∴P(0,),即點P、C重合,∴R(1,﹣),由此求直線PR解析式為y=﹣x+,當PQ=AM且QR=GM時,無解;②當點P在直線l右側(cè)時,同理:PQ=m﹣1,QR=1m﹣1,則P(1,﹣),R(0,﹣),PQ解析式為:y=﹣;∴PR解析式為:y=﹣x+或y=﹣.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)性質(zhì)、三角形全等和等腰三角形判定,熟練掌握相關(guān)知識,應(yīng)用數(shù)形結(jié)合和分類討論的數(shù)學思想進行解題是關(guān)鍵.20、(1)“最美東營人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三種方案,具體見解析.【解析】
(1)設(shè)“最美東營人”文化衫每件x元,“最美志愿者”文化衫每件y元,根據(jù)若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需11元建立方程組求出其解即可;(2)設(shè)購買“最美東營人”文化衫m(xù)件,根據(jù)總費用少于1595元,并且“最美東營人”文化衫的數(shù)量少于“最美志愿者”文化衫的數(shù)量,列出不等式組,然后求m的正整數(shù)解.【詳解】(1)設(shè)“最美東營人”文化衫每件x元,“最美志愿者”文化衫每件y元,由題意,得,解得:.答:“最美東營人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)設(shè)購買“最美東營人”文化衫m(xù)件,則購買“最美志愿者”文化衫(90-m)件,由題意,得,解得:41<m<1.∵m是整數(shù),∴m=42,43,2.則90-m=48,47,3.答:方案一:購買“最美東營人”文化衫42件,“最美志愿者”文化衫48件;方案二:購買“最美東營人”文化衫43件,“最美志愿者”文化衫47件;方案三:購買“最美東營人”文化衫2件,“最美志愿者”文化衫3件.【點睛】本題考查了二元一次方程組的運用,一元一次不等式組的運用,解決問題的關(guān)鍵是讀懂題意,找到關(guān)鍵描述語,進而找到所求的量的數(shù)量關(guān)系.21、(1)90°;(1)AE1+EB1=AC1,證明見解析.【解析】
(1)根據(jù)題意得到DE是線段BC的垂直平分線,根據(jù)線段垂直平分線的性質(zhì)得到EB=EC,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算即可;(1)根據(jù)勾股定理解答.【詳解】解:(1)∵點D是BC邊的中點,DE⊥BC,∴DE是線段BC的垂直平分線,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(1)AE1+EB1=AC1.∵∠AEC=90°,∴AE1+EC1=AC1,∵EB=EC,∴AE1+EB1=AC1.【點睛】本題考查的是線段垂直平分線的性質(zhì)定理,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關(guān)鍵.22、1平方米【解析】
設(shè)原計劃平均每天施工x平方米,則實際平均每天施工1.2x平方米,根據(jù)時間=工作總量÷工作效率結(jié)合提前11天完成任務(wù),即可得出關(guān)于x的分式方程,解之即可得出結(jié)論.【詳解】解:設(shè)原計劃平均每天施工x平方米,則實際平均每天施工1.2x平方米,根據(jù)題意得:﹣=11,解得:x=500,經(jīng)檢驗,x=500是原方程的解,∴1.2x=1.答:實際平均每天施工1平方米.【點睛】考查了分式方程的應(yīng)用,解題的關(guān)鍵是找準等量關(guān)系,正確列出分式方程.23、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】
(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點E,H分別為邊AB,DA的中點,∴EH∥BD,EH=BD,∵點F,G分別為邊BC,CD的中點,∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點E,F(xiàn),G分別為邊AB,BC,CD的中點,∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設(shè)AC與BD交于點O.AC與PD交于點M,AC與EH交于點N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點:平行四邊形的判定與性質(zhì);中點四邊形.24、見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;
應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,∴△BCE≌△DCG(SAS),
∴BE=DG.應(yīng)用:∵四邊形ABCD為菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,∴S△CDE=,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.25、(1)∠A=30°;(2)【解析】
(1)連接OC,由過點C的切線交AB的延長線于點D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度數(shù)及OC長度,即可求出圖中陰影部分的面積.【詳解】解:(1)連結(jié)OC∵CD為⊙O的切線∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S陰影=.【點睛】本題考查的知識點是扇形面積的計算及切線的性質(zhì),解題的關(guān)鍵是熟練的掌握扇形面積的計算及切線的性質(zhì).26、(1)OE=;(2)陰影部分的面積為【解析】
(1)由題意不難證明OE為△ABC的中位線,要求OE的長度即要求BC的長度,根據(jù)特殊角的三角函數(shù)即可求得;(2)由題意不難證明△COE≌△AFE,進而將要求的陰影部分面積轉(zhuǎn)化為扇形FOC的面積,利用扇形面積公式求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版板車運輸與物流設(shè)備租賃合同3篇
- 2025年度個人商鋪轉(zhuǎn)讓合同范本4篇
- 二零二五白蟻防治與建筑安全評估與隱患排查服務(wù)合同2篇
- 2025版企業(yè)間無利息貸款合同范本3篇
- 二零二五版國防信息安全保密責任書2篇
- 2025年度綠色苗圃場技術(shù)員專項技能聘用協(xié)議4篇
- 二零二五年攪拌站混凝土生產(chǎn)過程監(jiān)控與優(yōu)化合同3篇
- 2025年度網(wǎng)絡(luò)安全代理合作保密協(xié)議書3篇
- 2025版信托投資公司教育產(chǎn)業(yè)借款合同3篇
- 2025年度個人現(xiàn)金貸合同模板3篇
- 消防產(chǎn)品目錄(2025年修訂本)
- 地方性分異規(guī)律下的植被演替課件高三地理二輪專題復(fù)習
- 光伏項目風險控制與安全方案
- 《行政職業(yè)能力測驗》2023年公務(wù)員考試新疆維吾爾新疆生產(chǎn)建設(shè)兵團可克達拉市預(yù)測試題含解析
- 醫(yī)院投訴案例分析及處理要點
- 練習20連加連減
- 五四制青島版數(shù)學五年級上冊期末測試題及答案(共3套)
- 商法題庫(含答案)
- 鋼結(jié)構(gòu)用高強度大六角頭螺栓連接副 編制說明
- 溝通與談判PPT完整全套教學課件
- 移動商務(wù)內(nèi)容運營(吳洪貴)項目四 移動商務(wù)運營內(nèi)容的傳播
評論
0/150
提交評論