山西省稷山縣2025屆九年級數(shù)學第一學期期末復習檢測試題含解析_第1頁
山西省稷山縣2025屆九年級數(shù)學第一學期期末復習檢測試題含解析_第2頁
山西省稷山縣2025屆九年級數(shù)學第一學期期末復習檢測試題含解析_第3頁
山西省稷山縣2025屆九年級數(shù)學第一學期期末復習檢測試題含解析_第4頁
山西省稷山縣2025屆九年級數(shù)學第一學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省稷山縣2025屆九年級數(shù)學第一學期期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.在平面直角坐標系中,以點(3,2)為圓心、2為半徑的圓,一定()A.與x軸相切,與y軸相切 B.與x軸相切,與y軸相離C.與x軸相離,與y軸相切 D.與x軸相離,與y軸相離2.將拋物線向左平移2個單位長度,再向下平移3個單位長度,得到的拋物線的函數(shù)表達式為()A.B.C.D.3.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結論的序號是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤4.某反比例函數(shù)的圖象經(jīng)過點(-2,3),則此函數(shù)圖象也經(jīng)過()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)5.下列事件為必然事件的是()A.打開電視機,它正在播廣告B.a(chǎn)取任一個實數(shù),代數(shù)式a2+1的值都大于0C.明天太陽從西方升起D.拋擲一枚硬幣,一定正面朝上6.如圖,AB是⊙O的弦,半徑OC⊥AB,D為圓周上一點,若的度數(shù)為50°,則∠ADC的度數(shù)為()A.20° B.25° C.30° D.50°7.下列一元二次方程中兩根之和為﹣3的是()A.x2﹣3x+3=0 B.x2+3x+3=0 C.x2+3x﹣3=0 D.x2+6x﹣4=08.如圖,是直角三角形,,,點在反比例函數(shù)的圖象上.若點在反比例函數(shù)的圖象上,則的值為()A.2 B.-2 C.4 D.-49.我國古代數(shù)學著作《孫子算經(jīng)》中有“雞兔同籠”問題:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何.”設雞x只,兔y只,可列方程組為()A. B. C. D.10.如圖,△ABC中,∠C=90°,AB=5,AC=4,且點D,E分別是AC,AB的中點,若作半徑為3的⊙C,則下列選項中的點在⊙C外的是()A.點B B.點D C.點E D.點A二、填空題(每小題3分,共24分)11.拋物線的對稱軸是________.12.圓錐的母線長是5cm,底面半徑長是3cm,它的側面展開圖的圓心角是____.13.將拋物線y=﹣x2向右平移1個單位,再向上平移2個單位后,得到的拋物線的解析式為______.14.如圖,正方形ABOC與正方形EFCD的邊OC、CD均在x軸上,點F在AC邊上,反比例函數(shù)的圖象經(jīng)過點A、E,且,則________.15.反比例函數(shù)y=﹣的圖象與一次函數(shù)y=﹣x+5的圖象相交,其中一個交點坐標為(a,b),則=_____.16.若=,則的值為________.17.若代數(shù)式5x-5與2x-9的值互為相反數(shù),則x=________.18.如圖,是的兩條切線,為切點,點分別在線段上,且,則__________.三、解答題(共66分)19.(10分)先化簡,再選擇一個恰當?shù)臄?shù)代入后求值.20.(6分)(1)2y2+4y=y(tǒng)+2(用因式分解法)(2)x2﹣7x﹣18=0(用公式法)(3)4x2﹣8x﹣3=0(用配方法)21.(6分)某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:平均數(shù)方差中位數(shù)甲7①.7乙②.5.4③.(1)請將右上表補充完整:(參考公式:方差)(2)請從下列三個不同的角度對這次測試結果進行分析:①從平均數(shù)和方差相結合看,__________的成績好些;②從平均數(shù)和中位數(shù)相結合看,___________的成績好些;(3)若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認為選誰參加,并說明理由.22.(8分)如圖,拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線y=x﹣1交于A、B兩點,直線AB與拋物線的對稱軸交于點E.(1)求拋物線的解析式.(2)點P在直線AB上方的拋物線上運動,若△ABP的面積最大,求此時點P的坐標.(3)在平面直角坐標系中,以點B、E、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標.23.(8分)已知:如圖,在平面直角坐標系xOy中,直線AB與x軸交于點A(-2,0),與反比例函數(shù)在第一象限內的圖象交于點B(2,n),連接BO,若.(1)求該反比例函數(shù)的解析式和直線AB的解析式;(2)若直線AB與y軸的交點為C,求的面積.(3)在第一象限內,求當一次函數(shù)值大于反比例函數(shù)值時的反比例函數(shù)值取值范圍.24.(8分)如圖,賓館大廳的天花板上掛有一盞吊燈AB,某人從C點測得吊燈頂端A的仰角為,吊燈底端B的仰角為,從C點沿水平方向前進6米到達點D,測得吊燈底端B的仰角為.請根據(jù)以上數(shù)據(jù)求出吊燈AB的長度.(結果精確到0.1米.參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,≈1.73)25.(10分)如圖,四邊形ABCD中,對角線AC、BD相交于點O,且AD//BC,BD的垂直平分線經(jīng)過點O,分別與AD、BC交于點E、F(1)求證:四邊形ABCD為平行四邊形;(2)求證:四邊形BFDE為菱形.26.(10分)如圖:在Rt△ABC中,∠C=90°,∠ABC=30°。延長CB至D,使DB=AB。連接AD.(1)求∠ADB的度數(shù).(2)根據(jù)圖形,不使用計算器和數(shù)學用表,請你求出tan75°的值.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】本題應將該點的橫縱坐標分別與半徑對比,大于半徑時,則坐標軸與該圓相離;若等于半徑時,則坐標軸與該圓相切.【詳解】∵是以點(2,3)為圓心,2為半徑的圓,則有2=2,3>2,∴這個圓與x軸相切,與y軸相離.故選B.【點睛】本題考查了直線與圓的位置關系、坐標與圖形性質.直線與圓相切,直線到圓的距離等于半徑;與圓相離,直線到圓的距離大于半徑.2、A【分析】先確定拋物線y=x2的頂點坐標為(0,0),再根據(jù)點平移的規(guī)律得到點(0,0)平移后所得對應點的坐標為(-2,-1),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】拋物線y=x2的頂點坐標為(0,0),把點(0,0)向左平移1個單位,再向下平移2個單位長度所得對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.

故選A.3、C【分析】根據(jù)二次函數(shù)的性質逐項分析可得解.【詳解】解:由函數(shù)圖象可得各系數(shù)的關系:a<0,b<0,c>0,則①當x=1時,y=a+b+c<0,正確;②當x=-1時,y=a-b+c>1,正確;③abc>0,正確;④對稱軸x=-1,則x=-2和x=0時取值相同,則4a-2b+c=1>0,錯誤;⑤對稱軸x=-=-1,b=2a,又x=-1時,y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結論的序號是①②③⑤.故選C4、A【分析】設反比例函數(shù)y=(k為常數(shù),k≠0),由于反比例函數(shù)的圖象經(jīng)過點(-2,3),則k=-6,然后根據(jù)反比例函數(shù)圖象上點的坐標特征分別進行判斷.【詳解】設反比例函數(shù)y=(k為常數(shù),k≠0),∵反比例函數(shù)的圖象經(jīng)過點(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴點(2,-3)在反比例函數(shù)y=-的圖象上.故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.5、B【分析】由題意直接根據(jù)事件發(fā)生的可能性大小進行判斷即可.【詳解】解:A、打開電視機,它正在播廣告是隨機事件;B、∵a2≥0,∴a2+1≥1,∴a取任一個實數(shù),代數(shù)式a2+1的值都大于0是必然事件;C、明天太陽從西方升起是不可能事件;D、拋擲一枚硬幣,一定正面朝上是隨機事件;故選:B.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.注意掌握必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.6、B【分析】利用圓心角的度數(shù)等于它所對的弧的度數(shù)得到∠BOC=50°,利用垂徑定理得到,然后根據(jù)圓周角定理計算∠ADC的度數(shù).【詳解】∵的度數(shù)為50°,∴∠BOC=50°,∵半徑OC⊥AB,∴,∴∠ADC=∠BOC=25°.故選B.【點睛】本題考查了圓心角、弧、弦的關系:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等.也考查了垂徑定理和圓周角定理.7、C【分析】利用判別式的意義對A、B進行判斷;根據(jù)根與系數(shù)的關系對C、D進行判斷.【詳解】A.△=(﹣3)2﹣4×3<0,方程沒有實數(shù)解,所以A選項錯誤;B.△=32﹣4×3<0,方程沒有實數(shù)解,所以B選項錯誤;C.方程x2+3x﹣3=0的兩根之和為﹣3,所以C選項正確;D.方程x2+6x﹣4=0的兩根之和為﹣6,所以D選項錯誤.故選:C.【點睛】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.也考查了判別式的意義.8、D【分析】要求函數(shù)的解析式只要求出點的坐標就可以,過點、作軸,軸,分別于、,根據(jù)條件得到,得到:,然后用待定系數(shù)法即可.【詳解】過點、作軸,軸,分別于、,設點的坐標是,則,,,,,,,,,,,,因為點在反比例函數(shù)的圖象上,則,點在反比例函數(shù)的圖象上,點的坐標是,.故選:.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,相似三角形的判定與性質,求函數(shù)的解析式的問題,一般要轉化為求點的坐標的問題,求出圖象上點的橫縱坐標的積就可以求出反比例函數(shù)的解析式.9、D【解析】等量關系為:雞的只數(shù)+兔的只數(shù)=35,2×雞的只數(shù)+4×兔的只數(shù)=94,把相關數(shù)值代入即可得到所求的方程組.【詳解】解:∵雞有2只腳,兔有4只腳,∴可列方程組為:,故選D.【點睛】本題考查了由實際問題抽象出二元一次方程組.如何列出二元一次方程組的關鍵點在于從題干中找出等量關系.10、D【分析】分別求出AC、CE、BC、CD的長,根據(jù)點與圓的位置關系的判斷方法進行判斷即可.【詳解】如圖,連接CE,∵∠C=90°,AB=5,AC=4,∴BC==3,∵點D,E分別是AC,AB的中點,∴CD=AC=2,CE=AB=,∵⊙C的半徑為3,BC=3,,,∴點B在⊙C上,點E在⊙C內,點D在⊙C內,點A在⊙C外,故選:D.【點睛】本題考查點與圓的位置關系,解題的關鍵是求點到圓心的距離.二、填空題(每小題3分,共24分)11、【分析】根據(jù)二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸是直線x=?計算.【詳解】拋物線y=2x2+24x?7的對稱軸是:x=?=?1,故答案為:x=?1.【點睛】本題考查的是二次函數(shù)的性質,掌握二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸是直線x=?是解題的關鍵.12、216°.【詳解】圓錐的底面周長為2π×3=6π(cm),設圓錐側面展開圖的圓心角是n°,則=6π,解得n=216.故答案為216°.【點睛】本題考查了圓錐的計算,正確理解圓錐的側面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.13、y=﹣(x﹣1)1+1【分析】根據(jù)二次函數(shù)圖象的平移規(guī)律:左加右減,上加下減,可得答案.【詳解】將拋物線y=﹣x1向右平移1個單位,再向上平移1個單位后,得到的拋物線的解析式為y=﹣(x﹣1)1+1.故答案是:y=﹣(x﹣1)1+1.【點睛】本題考查了二次函數(shù)圖象與幾何變換,利用函數(shù)圖象的平移規(guī)律:左加右減,上加下減是解題關鍵.14、6【分析】設正方形ABOC與正方形EFCD的邊長分別為m,n,根據(jù)S△AOE=S梯形ACDE+S△AOC-S△ADE,可求出m2=6,然后根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義即可求解.【詳解】設正方形ABOC與正方形EFCD的邊長分別為m,n,則OD=m+n,∵S△AOE=S梯形ACDE+S△AOC-S△ADE,∴,∴m2=6,∵點A在反比例函數(shù)的圖象上,∴k=m2=6,故答案為:6.【點睛】本題考查了正方形的性質,割補法求圖形的面積,反比例函數(shù)比例系數(shù)k的幾何意義,從反比例函數(shù)(k為常數(shù),k≠0)圖像上任一點P,向x軸和y軸作垂線你,以點P及點P的兩個垂足和坐標原點為頂點的矩形的面積等于常數(shù).15、﹣【分析】根據(jù)函數(shù)圖象上點的坐標特征得到ab=﹣3,a+b=5,把原式變形,代入計算即可.【詳解】∵反比例函數(shù)的圖象與一次函數(shù)y=﹣x+5的圖象相交,其中一個交點坐標為(a,b),∴ab=﹣3,b+a=5,則,故答案為:﹣.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,掌握函數(shù)圖象上點的坐標特征是解題的關鍵.16、【分析】根據(jù)條件可知a與b的數(shù)量關系,然后代入原式即可求出答案.【詳解】∵=,∴b=a,∴=,故答案為:.【點睛】本題考查了分式,解題的關鍵是熟練運用分式的運算法則.17、2【解析】由5x-5的值與2x-9的值互為相反數(shù)可知:5x-5+2x-9=0,解此方程即可求得答案.【詳解】由題意可得:5x-5+2x-9=0,移項,得7x=14,系數(shù)化為1,得x=2.【點睛】本題考查了相反數(shù)的性質以及一元一次方程的解法.18、61°【分析】根據(jù)切線長定理,可得PA=PB,然后根據(jù)等腰三角形的性質和三角形的內角和定理即可求出∠FAD=∠DBE=61°,利用SAS即可證出△FAD≌△DBE,從而得出∠AFD=∠BDE,然后根據(jù)三角形外角的性質即可求出∠EDF.【詳解】解:∵是的兩條切線,∠P=58°∴PA=PB∴∠FAD=∠DBE=(180°-∠P)=61°在△FAD和△DBE中∴△FAD≌△DBE∴∠AFD=∠BDE,∵∠BDF=∠BDE+∠EDF=∠AFD+∠FAD∴∠EDF=∠FAD=61°故答案為:61°【點睛】此題考查的是切線長定理、等腰三角形的性質、三角形的內角和定理、全等三角形的判定及性質和三角形外角的性質,掌握切線長定理、等邊對等角和全等三角形的判定及性質是解決此題的關鍵.三、解答題(共66分)19、,2【分析】先根據(jù)分式混合運算的法則把原式進行化簡,再選取使原式有意義的x的值代入進行計算即可.【詳解】解:原式當時(、,其它的數(shù)都可以).【點睛】本題考查的是分式的化簡求值,熟知分式混合運算的法則是解答此題的關鍵.20、(1)y1=﹣2,y2=;(2)x1=9,x2=﹣2;(3)x1=1+,x2=1﹣.【分析】(1)先變形為2y(y+2)﹣(y+2)=0,然后利用因式分解法解方程;(2)先計算出判別式的值,然后利用求根公式法解方程;(3)先把二次項系數(shù)化為1,再兩邊加上一次項系數(shù)一半的平方,配方法得到(x﹣1)2=,然后利用直接開平方法解方程.【詳解】解:(1)2y(y+2)﹣(y+2)=0,∴(y+2)(2y﹣1)=0,∴y+2=0或2y﹣1=0,所以y1=﹣2,y2=;(2)a=1,b=﹣7,c=﹣18,∴△=(﹣7)2﹣4×(﹣18)=121,∴x=,∴x1=9,x2=﹣2;(3)x2﹣2x=,∴x2﹣2x+1=+1,∴(x﹣1)2=,∴x﹣1=±,∴x1=1+,x2=1﹣.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了配方法和公式法.21、(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由見解析【分析】(1)根據(jù)方差公式直接計算即可得出甲的方差,然后根據(jù)折線圖信息進一步分析即可求出乙的平均數(shù)以及中位數(shù);(2)①甲乙平均數(shù)相同,而甲的方差要小,所以甲的成績更加穩(wěn)定,從而得出甲的成績好一些;②甲乙平均數(shù)相同,而乙的中位數(shù)較大,即乙的成績的中間量較大,所以得出乙的成績好一些;(3)根據(jù)甲乙二人成績的相關數(shù)據(jù)結合實際進一步分析比較即可.【詳解】(1)①甲的方差為:,②乙的平均數(shù)為:,③乙的中位數(shù)為:,故答案為:①1.2;②7;③7.5;(2)①甲乙平均數(shù)相同,而甲的方差要小,所以甲的成績更加穩(wěn)定,從而得出甲的成績好一些;②甲乙平均數(shù)相同,而乙的中位數(shù)較大,即乙的成績的中間量較大,所以得出乙的成績好一些;故答案為:①甲;②乙;(3)選乙,理由如下:綜合看,甲發(fā)揮更穩(wěn)定,但射擊精準度差;乙發(fā)揮雖然不穩(wěn)定,但擊中高靶環(huán)次數(shù)更多,成績逐步上升,提高潛力大,更具有培養(yǎng)價值,所以應選乙.【點睛】本題考查了折線統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵,折線統(tǒng)計圖能清楚地看出數(shù)據(jù)的變化情況.22、(1)y=﹣x2﹣2x+3;(2)點P(,);(3)符合條件的點D的坐標為D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【分析】(1)令y=0,求出點A的坐標,根據(jù)拋物線的對稱軸是x=﹣1,求出點C的坐標,再根據(jù)待定系數(shù)法求出拋物線的解析式即可;(2)設點P(m,﹣m2﹣2m+3),利用拋物線與直線相交,求出點B的坐標,過點P作PF∥y軸交直線AB于點F,利用S△ABP=S△PBF+S△PFA,用含m的式子表示出△ABP的面積,利用二次函數(shù)的最大值,即可求得點P的坐標;(3)求出點E的坐標,然后求出直線BC、直線BE、直線CE的解析式,再根據(jù)以點B、E、C、D為頂點的四邊形是平行四邊形,得到直線D1D2、直線D1D3、直線D2D3的解析式,即可求出交點坐標.【詳解】解:(1)令y=0,可得:x﹣1=0,解得:x=1,∴點A(1,0),∵拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,∴﹣1×2﹣1=﹣3,即點C(﹣3,0),∴,解得:∴拋物線的解析式為:y=﹣x2﹣2x+3;(2)∵點P在直線AB上方的拋物線上運動,∴設點P(m,﹣m2﹣2m+3),∵拋物線與直線y=x﹣1交于A、B兩點,∴,解得:,∴點B(﹣4,﹣5),如圖,過點P作PF∥y軸交直線AB于點F,則點F(m,m﹣1),∴PF=﹣m2﹣2m+3﹣m+1=﹣m2﹣3m+4,∴S△ABP=S△PBF+S△PFA=(﹣m2﹣3m+4)(m+4)+(﹣m2﹣3m+4)(1﹣m)=-(m+)2+,∴當m=時,P最大,∴點P(,).(3)當x=﹣1時,y=﹣1﹣1=﹣2,∴點E(﹣1,﹣2),如圖,直線BC的解析式為y=5x+15,直線BE的解析式為y=x﹣1,直線CE的解析式為y=﹣x﹣3,∵以點B、C、E、D為頂點的四邊形是平行四邊形,∴直線D1D3的解析式為y=5x+3,直線D1D2的解析式為y=x+3,直線D2D3的解析式為y=﹣x﹣9,聯(lián)立得D1(0,3),同理可得D2(﹣6,﹣3),D3(﹣2,﹣7),綜上所述,符合條件的點D的坐標為D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【點睛】本題考查二次函數(shù)的綜合應用,解決第(2)小題中三角形面積的問題時,找到一條平行或垂直于坐標軸的邊是關鍵;對于第(3)小題,要注意分類討論、數(shù)形結合的運用,不要漏解.23、(1)反比例函數(shù)的解析式為,直線AB的解析式為;(2)2;(3).【分析】(1)先根據(jù)可求出點B的坐標,再利用待定系數(shù)法即可得;(2)先根據(jù)直線AB的解析式求出點C的坐標,從而可得OC的長,再根據(jù)點B的坐標可得OC邊上的高,然后根據(jù)三角形的面積公式即可;(3)結合點B的坐標,利用函數(shù)圖象法即可得.【詳解】(1),且點B位于第一象限,,的OA邊上的高為,,解得,,設反比例函數(shù)的解析式為,將點代入得:,解得,則反比例函數(shù)的解析式為,設直線AB的解析式為,將點代入得:,解得,則直線AB的解析式為;(2)對于,當時,,即點C的坐標為,則,,的OC邊上的高為2,則的面積為;(3)在第一象限內,一次函數(shù)值大于反比例函數(shù)值表示的是一次函數(shù)的圖象位于反比例函數(shù)的圖象的上方,則由函數(shù)圖象得:此時反比例函數(shù)值取值范圍為.【點睛】本題考查了利用待定系數(shù)法求一次函數(shù)和反比例函數(shù)的解析式、一次函數(shù)與反比例函數(shù)的綜合等知識點,熟練掌握待定系數(shù)法是解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論