版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)滿足:,則的共軛復(fù)數(shù)為()A. B. C. D.2.若點(diǎn)是角的終邊上一點(diǎn),則()A. B. C. D.3.拋物線y2=ax(a>0)的準(zhǔn)線與雙曲線C:x28A.8 B.6 C.4 D.24.集合的真子集的個(gè)數(shù)是()A. B. C. D.5.當(dāng)時(shí),函數(shù)的圖象大致是()A. B.C. D.6.國(guó)家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國(guó)物流與采購(gòu)聯(lián)合會(huì)發(fā)布的2018年10月份至2019年9月份共12個(gè)月的中國(guó)制造業(yè)采購(gòu)經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是()A.12個(gè)月的PMI值不低于50%的頻率為B.12個(gè)月的PMI值的平均值低于50%C.12個(gè)月的PMI值的眾數(shù)為49.4%D.12個(gè)月的PMI值的中位數(shù)為50.3%7.設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要8.設(shè),,是非零向量.若,則()A. B. C. D.9.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),延長(zhǎng)交橢圓于點(diǎn),若為等腰三角形,則橢圓的離心率A. B.C. D.10.如圖,平面與平面相交于,,,點(diǎn),點(diǎn),則下列敘述錯(cuò)誤的是()A.直線與異面B.過(guò)只有唯一平面與平行C.過(guò)點(diǎn)只能作唯一平面與垂直D.過(guò)一定能作一平面與垂直11.已知函數(shù),若恒成立,則滿足條件的的個(gè)數(shù)為()A.0 B.1 C.2 D.312.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長(zhǎng)為4的正方形ABCD內(nèi)任取一點(diǎn)M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q二、填空題:本題共4小題,每小題5分,共20分。13.已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為_(kāi)_______.14.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),則?_____,△ABC的面積為_(kāi)____.15.在矩形中,,為的中點(diǎn),將和分別沿,翻折,使點(diǎn)與重合于點(diǎn).若,則三棱錐的外接球的表面積為_(kāi)____.16.已知為等差數(shù)列,為其前n項(xiàng)和,若,,則_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓上有一動(dòng)點(diǎn),點(diǎn)的坐標(biāo)為,四邊形為平行四邊形,線段的垂直平分線交于點(diǎn).(Ⅰ)求點(diǎn)的軌跡的方程;(Ⅱ)過(guò)點(diǎn)作直線與曲線交于兩點(diǎn),點(diǎn)的坐標(biāo)為,直線與軸分別交于兩點(diǎn),求證:線段的中點(diǎn)為定點(diǎn),并求出面積的最大值.18.(12分)如圖,在平行四邊形中,,,現(xiàn)沿對(duì)角線將折起,使點(diǎn)A到達(dá)點(diǎn)P,點(diǎn)M,N分別在直線,上,且A,B,M,N四點(diǎn)共面.(1)求證:;(2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.19.(12分)已知.(1)當(dāng)時(shí),求不等式的解集;(2)若時(shí)不等式成立,求的取值范圍.20.(12分)如圖,⊙的直徑的延長(zhǎng)線與弦的延長(zhǎng)線相交于點(diǎn),為⊙上一點(diǎn),,交于點(diǎn).求證:~.21.(12分)已知函數(shù).(1)當(dāng)時(shí),判斷在上的單調(diào)性并加以證明;(2)若,,求的取值范圍.22.(10分)如圖,空間幾何體中,是邊長(zhǎng)為2的等邊三角形,,,,平面平面,且平面平面,為中點(diǎn).(1)證明:平面;(2)求二面角平面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
轉(zhuǎn)化,為,利用復(fù)數(shù)的除法化簡(jiǎn),即得解【詳解】復(fù)數(shù)滿足:所以故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法和復(fù)數(shù)的基本概念,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.2、A【解析】
根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點(diǎn)是角的終邊上一點(diǎn),根據(jù)三角函數(shù)的定義,可得,則,故選A.【點(diǎn)睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡(jiǎn)、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準(zhǔn)確化簡(jiǎn)、計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、A【解析】
求得拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,解得兩交點(diǎn),由三角形的面積公式,計(jì)算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準(zhǔn)線為x=-a4,雙曲線C:x28-y24【點(diǎn)睛】本題考查三角形的面積的求法,注意運(yùn)用拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.4、C【解析】
根據(jù)含有個(gè)元素的集合,有個(gè)子集,有個(gè)真子集,計(jì)算可得;【詳解】解:集合含有個(gè)元素,則集合的真子集有(個(gè)),故選:C【點(diǎn)睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對(duì)于含有個(gè)元素的集合,有個(gè)子集,有個(gè)真子集,屬于基礎(chǔ)題.5、B【解析】由,解得,即或,函數(shù)有兩個(gè)零點(diǎn),,不正確,設(shè),則,由,解得或,由,解得:,即是函數(shù)的一個(gè)極大值點(diǎn),不成立,排除,故選B.【方法點(diǎn)晴】本題通過(guò)對(duì)多個(gè)圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導(dǎo)數(shù)的應(yīng)用以及數(shù)學(xué)化歸思想,屬于難題.這類題型也是近年高考常見(jiàn)的命題方向,該題型的特點(diǎn)是綜合性較強(qiáng)較強(qiáng)、考查知識(shí)點(diǎn)較多,但是并不是無(wú)路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點(diǎn)以及時(shí)函數(shù)圖象的變化趨勢(shì),利用排除法,將不合題意選項(xiàng)一一排除.6、D【解析】
根據(jù)圖形中的信息,可得頻率、平均值的估計(jì)、眾數(shù)、中位數(shù),從而得到答案.【詳解】對(duì)A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個(gè),所以12個(gè)月的PMI值不低于50%的頻率為,故A正確;對(duì)B,由圖可以看出,PMI值的平均值低于50%,故B正確;對(duì)C,12個(gè)月的PMI值的眾數(shù)為49.4%,故C正確,;對(duì)D,12個(gè)月的PMI值的中位數(shù)為49.6%,故D錯(cuò)誤故選:D.【點(diǎn)睛】本題考查頻率、平均值的估計(jì)、眾數(shù)、中位數(shù)計(jì)算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.7、A【解析】
首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因?yàn)楹愠闪ⅲ士梢酝瞥銮?,若成立,?dāng)時(shí),有,當(dāng)時(shí),有,因?yàn)楹愠闪?,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.8、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問(wèn)題是近幾年高考的又一熱點(diǎn),作為一類既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識(shí),又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問(wèn)題,實(shí)有其合理之處.解決此類問(wèn)題的常用方法是:①利用已知條件,結(jié)合平面幾何知識(shí)及向量數(shù)量積的基本概念直接求解(較易);②將條件通過(guò)向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對(duì)解含垂直關(guān)系的問(wèn)題往往有很好效果.9、B【解析】
設(shè),則,,因?yàn)椋裕?,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.10、D【解析】
根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對(duì)選項(xiàng)中的命題判斷.【詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過(guò)只有唯一平面與平行,故正確.C.根據(jù)過(guò)一點(diǎn)有且只有一個(gè)平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過(guò)不一定能作一平面與垂直,故錯(cuò)誤.故選:D【點(diǎn)睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.11、C【解析】
由不等式恒成立問(wèn)題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個(gè)數(shù),綜合①②③得解.【詳解】①當(dāng)時(shí),,滿足題意,②當(dāng)時(shí),,,,,故不恒成立,③當(dāng)時(shí),設(shè),,令,得,,得,下面考查方程的解的個(gè)數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個(gè)使得成立,綜合①②③得:滿足條件的的個(gè)數(shù)是2個(gè),故選:.【點(diǎn)睛】本題考查了不等式恒成立問(wèn)題及利用導(dǎo)數(shù)研究函數(shù)的解得個(gè)數(shù),重點(diǎn)考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.12、B【解析】因?yàn)閺挠?件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯(cuò)誤,則?p是正確的;在邊長(zhǎng)為4的正方形ABCD內(nèi)任取一點(diǎn)M點(diǎn)睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復(fù)合命題的真假的判定有機(jī)地整合在一起,旨在考查命題真假的判定及古典概型的特征與計(jì)算公式的運(yùn)用、幾何概型的特征與計(jì)算公式的運(yùn)用等知識(shí)與方法的綜合運(yùn)用,以及分析問(wèn)題解決問(wèn)題的能力。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出橢圓與雙曲線的離心率,根據(jù)離心率之積的關(guān)系,然后推出關(guān)系,即可求解雙曲線的漸近線方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為,,,的漸近線方程為:,即.故答案為:【點(diǎn)睛】本題考查了橢圓、雙曲線的幾何性質(zhì),掌握橢圓、雙曲線的離心率公式,屬于基礎(chǔ)題.14、【解析】
①根據(jù)向量數(shù)量積的坐標(biāo)表示結(jié)合兩角差的正弦公式的逆用即可得解;②結(jié)合①求出,根據(jù)面積公式即可得解.【詳解】①2(sin32°?cos77°﹣cos32°?sin77°),②,,∴,∴.故答案為:.【點(diǎn)睛】此題考查平面向量與三角函數(shù)解三角形綜合應(yīng)用,涉及平面向量數(shù)量積的坐標(biāo)表示,三角恒等變換,根據(jù)三角形面積公式求解三角形面積,綜合性強(qiáng).15、.【解析】
計(jì)算外接圓的半徑,并假設(shè)外接球的半徑為R,可得球心在過(guò)外接圓圓心且垂直圓面的垂線上,然后根據(jù)面,即可得解.【詳解】由題意可知,,所以可得面,設(shè)外接圓的半徑為,由正弦定理可得,即,,設(shè)三棱錐外接球的半徑,因?yàn)橥饨忧虻那蛐臑檫^(guò)底面圓心垂直于底面的直線與中截面的交點(diǎn),則,所以外接球的表面積為.故答案為:.【點(diǎn)睛】本題考查三棱錐的外接球的應(yīng)用,屬于中檔題.16、1【解析】試題分析:因?yàn)槭堑炔顢?shù)列,所以,即,又,所以,所以.故答案為1.【考點(diǎn)】等差數(shù)列的基本性質(zhì)【名師點(diǎn)睛】在等差數(shù)列五個(gè)基本量,,,,中,已知其中三個(gè)量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式列出關(guān)于基本量的方程(組)來(lái)求余下的兩個(gè)量,計(jì)算時(shí)須注意整體代換思想及方程思想的應(yīng)用.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)先畫(huà)出圖形,結(jié)合垂直平分線和平行四邊形性質(zhì)可得為一定值,,故可確定點(diǎn)軌跡為橢圓(),進(jìn)而求解;(Ⅱ)設(shè)直線方程為,點(diǎn)坐標(biāo)分別為,聯(lián)立直線與橢圓方程得,,分別由點(diǎn)斜式求得直線KA的方程為,令得,同理得,由結(jié)合韋達(dá)定理即可求解,而,當(dāng)重合交于點(diǎn)時(shí),可求最值;【詳解】(Ⅰ),所以點(diǎn)的軌跡是一個(gè)橢圓,且長(zhǎng)軸長(zhǎng),半焦距,所以,軌跡的方程為.(Ⅱ)當(dāng)直線的斜率為0時(shí),與曲線無(wú)交點(diǎn).當(dāng)直線的斜率不為0時(shí),設(shè)過(guò)點(diǎn)的直線方程為,點(diǎn)坐標(biāo)分別為.直線與橢圓方程聯(lián)立得消去,得.則,.直線KA的方程為.令得.同理可得.所以.所以的中點(diǎn)為.不妨設(shè)點(diǎn)在點(diǎn)的上方,則.【點(diǎn)睛】本題考查根據(jù)橢圓的定義求橢圓的方程,橢圓中的定點(diǎn)定值問(wèn)題,屬于中檔題18、(1)證明見(jiàn)解析;(2)【解析】
(1)根據(jù)余弦定理,可得,利用//,可得//平面,然后利用線面平行的性質(zhì)定理,//,最后可得結(jié)果.(2)根據(jù)二面角平面角大小為,可知N為的中點(diǎn),然后利用建系,計(jì)算以及平面的一個(gè)法向量,利用向量的夾角公式,可得結(jié)果.【詳解】(1)不妨設(shè),則,在中,,則,因?yàn)?,所以,因?yàn)?/,且A、B、M、N四點(diǎn)共面,所以//平面.又平面平面,所以//.而,.(2)因?yàn)槠矫嫫矫?,且,所以平面,,因?yàn)?,所以平面,,因?yàn)?,平面與平面夾角為,所以,在中,易知N為的中點(diǎn),如圖,建立空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的一個(gè)法向量為,則由,令,得.設(shè)與平面所成角為,則.【點(diǎn)睛】本題考查線面平行的性質(zhì)定理以及線面角,熟練掌握利用建系的方法解決幾何問(wèn)題,將幾何問(wèn)題代數(shù)化,化繁為簡(jiǎn),屬中檔題.19、(1);(2)【解析】分析:(1)將代入函數(shù)解析式,求得,利用零點(diǎn)分段將解析式化為,然后利用分段函數(shù),分情況討論求得不等式的解集為;(2)根據(jù)題中所給的,其中一個(gè)絕對(duì)值符號(hào)可以去掉,不等式可以化為時(shí),分情況討論即可求得結(jié)果.詳解:(1)當(dāng)時(shí),,即故不等式的解集為.(2)當(dāng)時(shí)成立等價(jià)于當(dāng)時(shí)成立.若,則當(dāng)時(shí);若,的解集為,所以,故.綜上,的取值范圍為.點(diǎn)睛:該題考查的是有關(guān)絕對(duì)值不等式的解法,以及含參的絕對(duì)值的式子在某個(gè)區(qū)間上恒成立求參數(shù)的取值范圍的問(wèn)題,在解題的過(guò)程中,需要會(huì)用零點(diǎn)分段法將其化為分段函數(shù),從而將不等式轉(zhuǎn)化為多個(gè)不等式組來(lái)解決,關(guān)于第二問(wèn)求參數(shù)的取值范圍時(shí),可以應(yīng)用題中所給的自變量的范圍,去掉一個(gè)絕對(duì)值符號(hào),之后進(jìn)行分類討論,求得結(jié)果.20、證明見(jiàn)解析【解析】
根據(jù)相似三角形的判定定理,已知兩個(gè)三角形有公共角,題中未給出線段比例關(guān)系,故可根據(jù)判定定理一需找到另外一組相等角,結(jié)合平面幾何的知識(shí)證得即可.【詳解】證明:∵,所以,又因?yàn)椋裕谂c中,,,故~.【點(diǎn)睛】本題考查平面幾何中同弧所對(duì)的圓心角與圓周角的關(guān)系、相似三角形的判定定理;考查邏輯推理能力和數(shù)形結(jié)合思想;分析圖形,找出角與角之間的關(guān)系是證明本題的關(guān)鍵;屬于基礎(chǔ)題.21、(1)在為增函數(shù);證明見(jiàn)解析(2)【解析】
(1)令,求出,可推得,故在為增函數(shù);(2)令,則,由此利用分類討論思想和導(dǎo)數(shù)性質(zhì)求出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),.記,則,當(dāng)時(shí),,.所以,所以在單調(diào)遞增,所以.因?yàn)?,所以,所以?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度國(guó)產(chǎn)打印機(jī)節(jié)能環(huán)保認(rèn)證采購(gòu)合同
- 重慶2025年重慶市北碚區(qū)基層醫(yī)療衛(wèi)生事業(yè)單位招聘14人筆試歷年參考題庫(kù)附帶答案詳解
- 酒泉2025年甘肅酒泉市公安局招聘留置看護(hù)崗位輔警60人筆試歷年參考題庫(kù)附帶答案詳解
- 貴州2025年貴州省文化和旅游廳直屬事業(yè)單位招聘12人筆試歷年參考題庫(kù)附帶答案詳解
- 玉林2025年廣西玉林市第一人民醫(yī)院招聘24人筆試歷年參考題庫(kù)附帶答案詳解
- 漯河2024年河南漯河市立醫(yī)院(漯河市骨科醫(yī)院漯河醫(yī)專二附院)招聘高層次人才筆試歷年參考題庫(kù)附帶答案詳解
- 海口海南??谑协偵絽^(qū)教育局招聘2025屆師范畢業(yè)生筆試歷年參考題庫(kù)附帶答案詳解
- 河北2024年中國(guó)工商銀行河北分行鄉(xiāng)村振興專項(xiàng)招聘20人筆試歷年參考題庫(kù)附帶答案詳解
- 2025年中國(guó)太陽(yáng)能十字路口單黃閃警示燈市場(chǎng)調(diào)查研究報(bào)告
- 2025年艾納素項(xiàng)目可行性研究報(bào)告
- 光纜線路施工安全協(xié)議書(shū)范本
- 成本合約規(guī)劃培訓(xùn)
- 山東省濟(jì)寧市2025屆高三歷史一輪復(fù)習(xí)高考仿真試卷 含答案
- 五年級(jí)數(shù)學(xué)(小數(shù)乘法)計(jì)算題專項(xiàng)練習(xí)及答案
- 交通法規(guī)教育課件
- 產(chǎn)前診斷室護(hù)理工作總結(jié)
- 6S管理知識(shí)培訓(xùn)課件
- 小學(xué)校長(zhǎng)任期五年工作目標(biāo)(2024年-2029年)
- 醫(yī)院培訓(xùn)課件:《猴痘流行病學(xué)特點(diǎn)及中國(guó)大陸首例猴痘病例調(diào)查處置》
- 氫氣-安全技術(shù)說(shuō)明書(shū)MSDS
- 產(chǎn)科護(hù)士臨床思維能力培養(yǎng)
評(píng)論
0/150
提交評(píng)論