版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
新人教A版高中數(shù)學(xué)必修2直線與圓同步質(zhì)量檢測(一)
新人教A版必修2同步質(zhì)量檢測
直線與圓(1)
一、選擇題
1.[2013?長春模擬]己知點(diǎn)A(l,-1),B(—1,1),則以線段AB為直徑的圓的方程是
()A.x2
+y2
—2B.x2
4-y2
=2C.x2+y2=lD.x2+y2=4
答案:A
解析:圓心為(0,0)2,應(yīng)選A項(xiàng).
2.[2013?吉林模擬]圓x2+y2-2x+6y+5a=0關(guān)于直線y=x+2b成軸對稱圖形,則
a-b的取值范圍是()
A.(—8,4)B.(—8,o)C.(—4,+°°)D.(4,+=°)
答案:A
解析:由題意,得圓心(1,一3)在直線y=x+2b上,得b=-2,由圓成立的條件可得
(-2)2+62—4X5a>0,解得a<2,.\a-b<4,故選A.
3.過點(diǎn)M(l,2)的直線1將圓(x-2)2+y2=9分成兩段弧,當(dāng)其中的劣弧最短時(shí),直線
的方程是()
A.x=lB.y=lC.x—y+l=0D.x—2y+3=0
答案:D
解析:設(shè)圓心為C,當(dāng)CMJ_1時(shí),圓截1的弦最短,其所對的劣弧最短,又kCM=-2,
.?.kl=12
直線1的方程為y-2=1
2
(x—1),即x—2y+3=0.
4.[2013?安徽淮北模擬]若圓C的半徑為1,圓心在第一象限,且與直線4x-3y=0和
x軸都相切,則該圓的標(biāo)準(zhǔn)方程是()
A.(x—2)2+(y—1)2—1B.(x—2)2+(y—3)2—1C.(x—3)2+(y—2)2—1D.(x—
3)2+(y-l)2=l答案:A
解析:設(shè)圓心坐標(biāo)為(a,b),由題意知a>0,且b=l.又?.?圓和直線4x—3y=0相切,
|4a-3|
5
—1,即14a—31=5,Va>0,.".a—2.
所以圓的方程為(x—2)2+(y—1)2=1.
5.[2013?海淀檢測]點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)的軌跡方程是()
A.(x-2)2+(y+l)2=lB.(x-2)2+(y+l)2=4C.(x+4)2+(y-2)2=4D.(x+
2)2+(y-l)2=l答案:A
x4+x
解析:設(shè)圓上任一點(diǎn)為Q(x0
,y0
),PQ的中點(diǎn)為M(x,y),則2
解得0=2x—4,
y—2+y
y0
=2y+2.
2
x因?yàn)辄c(diǎn)Q在圓x2+y2=4上,所以x20+為0=4,即(2x-4)2+(2y+2)2=4,即
(x—2)2+(y+l)2
1.
6.[2013?金版原創(chuàng)]若圓0的半徑為3,直徑AB上一點(diǎn)D使AB-=3AD-
,E、F為另一直徑的兩個(gè)端點(diǎn),則DE-?DFf
=()
A.-3B.-4C.-6D.-8
答案:D
解析:依題意得,DEf,DF-*—(DO->+OE-*),(DO-*+0F—*)—(DO->H_OE—*),(DO-*
-0E->
)=1-9=一8,故選D.7.[2012?遼寧高考]將圓x2+y2-2x-4y+l=0平分的直線
是()A.x+y—1=0B.x+y+3=0C.x-y+l=0D.x-y+3=0
答案:C
解析:本小題主要考查直線與圓的位置關(guān)系.解題的突破口為弄清平分線的實(shí)質(zhì)是過圓
心的直線,即圓心符合直線方程.
圓的標(biāo)準(zhǔn)方程為(x-l)2
+(y-2)2
=4,所以圓心為(1,2),把點(diǎn)(1,2)代入A、B、C、D,不難得出選項(xiàng)C符合要求.8.
[2013?玉湖月考]圓(x+l)2+(y—4)2=1關(guān)于直線y=x對稱的圓的方程是()A.(x-
l)2+(y+4)2=lB.(x-4)2+(y+l)2=lC.(x+4)2+(y-1)2=1D.(x-l)2+(y-
4)2=1答案:B
解析:已知圓的圓心為(-1,4),它關(guān)于y=x的對稱點(diǎn)是(4,-1),即為對稱圓
心.二、填空題
9.[2013?東北四校模擬]已知圓C過點(diǎn)A(l,0)和B(3,0),且圓心在直線y=x上,則
圓C的標(biāo)準(zhǔn)方程為.
答案:(x-2)2+(y-2)2=5
解析:由題意可設(shè)圓心坐標(biāo)為(a,a),則圓的標(biāo)準(zhǔn)方程為(x—a)2+(y—a)2=r2,
/.1-a2+a2=r2
3-a2+a2=r2解得a=2r2=5
故圓C的標(biāo)準(zhǔn)方程為(x-2)2+(y—2)2=5.
10.已知圓C的圓心與點(diǎn)M(l,-1)關(guān)于直線x—y+l=0對稱,并且圓C與x—y+l=
0相切,則圓C的方程為.
答案:(x+2)2+(y-2)2=9
2
解析:所求圓的圓心為(一2,2),設(shè)圓的方程為(x+2)2
+(y-2)2
=r2
(r>0),則圓心(一2,2)到直線x-y+1=0的距離為r,得r=9
2,故圓C的方程為(x+2)2+(y—2)2=2
11.[2013?溫州模擬]若直線2ax+by—2=0(a,b為正實(shí)數(shù))平分圓x2+y2—2x—4y—
6=0,則2
a+
1
b
.答案:3+22
解析:圓心為(1,2),代入直線方程得a+b=l,則2a+lb=(2a+lb)(a+b)=3+a2b
ba23+22.等
號成立的條件為a=2—2,b2-l.
12.[2013?金版原創(chuàng)題]若圓的方程為x2+y2+kx+2y+k2=0,則當(dāng)圓的面積最大
時(shí),圓心為.
答案:(0,-1)
方程為x2
+y2
+kx+2y+k2
=0化為標(biāo)準(zhǔn)方程為(x+k23k2解析:2
2)+(y+l)=l-4
2
3k2
Vr=14
Wl,.?.k=0時(shí)r最大.
此時(shí)圓心為(0,-1).三、解答題
13.已知圓的方程為(x-m)2+(y+m—4)2=2.(1)求圓心C的軌跡方程;
(2)當(dāng)|OC|最小時(shí),求圓C的一般方程(0為坐標(biāo)原點(diǎn)).
解析:(1)設(shè)C(x,y),則x=m,
y=4—m.
消去m,得y=4—x.
圓心C的軌跡方程為x+y-4=0.
⑵當(dāng)|0C|最小時(shí),0C與直線x+y—4=0垂直,直線0C的方程為x—y=0.
由x+y-4=0,
得x=y=2.
x—y=0,
即|0C|最小時(shí),圓心的坐標(biāo)為(2,2),???mnZ.圓C的方程為(x—2)2+(y—2)2=2.其
一般方程為x2+y2—4x—4y+6=0.
14.[2013?吉林實(shí)驗(yàn)中學(xué)模擬]已知以點(diǎn)P為圓心的圓經(jīng)過點(diǎn)A(—1,0)和B(3,4),線
段AB的垂直平分線交圓P于點(diǎn)C和D,且|CD1=410.
(1)求直線CD的方程;(2)求圓P的方程.
解析:(1)直線AB的斜率k=l,AB的中點(diǎn)坐標(biāo)為(1,2),直線CD的方程為y—2=—
(x—1),即x+y—3=0.
(2)設(shè)圓心心a,b),則由P在CD上得a+b—3=0.①又直徑|CD=410,A|PA=
210,(a+l)2+b2=40.②由①②解得a=-3,a=5,b=6或b
=-2.
二圓心心一3,6)或P(5,-2).
...圓P的方程為(x+3)2+(y—6)2=40或(x-5)2+(y+2)2=40.15.已知點(diǎn)P(x,y)
是圓(x+2)2+y2=l上任意一點(diǎn).(1)求x-2y的最大值和最小值;(2)求y—2
X—1
的最大值和最小值.
解析:(1)設(shè)t=x-2y,則直線x-2y-t=0與圓(x+2)2+y2=l有公共點(diǎn).-2
-1|
1+21.5—2Wt<5—2.tmax=5—2,tmin=-2—5.
⑵設(shè)k=y—2
kx—y—k+2=0與圓(x+2)2+y2x—l=l有公共點(diǎn),
|—3k+21k+1
1.3-333
妹W4.
.\k3+3max=
4k3—3min=4
.16.已知線段AB的端點(diǎn)B的坐標(biāo)是(4,3),端點(diǎn)A在圓(x+l)2+y2=4上運(yùn)動,求線
段AB的中點(diǎn)M的軌跡.
解析:設(shè)點(diǎn)M的坐標(biāo)是(x,y),點(diǎn)A的坐標(biāo)是(xO,yO),由于點(diǎn)B的坐標(biāo)是(4,3),且
點(diǎn)M是線段AB的中點(diǎn).所以xx0+4y0+3
2y=2
x0=2x—4,y0=2y—3.①
因?yàn)辄c(diǎn)A在圓(x+l)2
+y2
=4上運(yùn)動,所以點(diǎn)A的坐標(biāo)滿足方程(x+1)2
+y2
=4,即(xO+1)
2
+y20=4.②
把①代入②,得(2x-4+l)2+(2y-3)2=4,整理,得x-33
22+y-22=l.所以,點(diǎn)M的軌跡是以3322為圓心,半徑長是1的圓.
17.[2013?紹興模擬]已知圓C經(jīng)過P(4,-2),Q(—1,3)兩點(diǎn),且在y軸上截得的線
段長為3,
半徑小于5.
(1)求直線PQ與圓C的方程;
⑵若直線1〃PQ,且1與圓C交于點(diǎn)A,B,且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求
直線1的方程.
解析:(1)直線PQ的方程為:x+y-2=0,設(shè)圓心C(a,b),半徑為r,由于線段PQ
的垂直平分線的方程是yl3
2=x—2
,即y=x—l,所以b=a—L①又由在y軸上截得的線段長為43,知(a+l)2+(b-
3)2=12+a2.②由①②得:a=l,b=0或a=5,b=4.當(dāng)a=l,b=0時(shí),r2=13滿足
題意當(dāng)a=5,b=4時(shí),r2=37不滿足題意,故圓C的方程為(x—l)2+y2=13.⑵設(shè)
直線1的方程為y=—x+m,A(xl,m—xl),B(x2,m—x2),
由題意可知OA_LOB,即kOA?kOB=-LA
m-xlm-xlx2
xl.2
整理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版幼兒園幼兒體育活動組織與指導(dǎo)合同4篇
- 建筑裝飾設(shè)計(jì)合同(2篇)
- 工廠勞務(wù)合同范本(2篇)
- 全新業(yè)務(wù)2025年度融資租賃合同3篇
- 2025年度建筑工地挖掘機(jī)駕駛員勞動合同范本2篇
- 二零二五年度綠色環(huán)保抹灰材料供應(yīng)承包合同4篇
- 二零二五版醫(yī)療器械包裝模具采購合同4篇
- 風(fēng)力升壓站課程設(shè)計(jì)
- 2025年模具設(shè)計(jì)軟件授權(quán)使用合同3篇
- 2025年個(gè)人購房貸款合同爭議調(diào)解合同4篇
- 深圳2024-2025學(xué)年度四年級第一學(xué)期期末數(shù)學(xué)試題
- 中考語文復(fù)習(xí)說話要得體
- 《工商業(yè)儲能柜技術(shù)規(guī)范》
- 華中師范大學(xué)教育技術(shù)學(xué)碩士研究生培養(yǎng)方案
- 醫(yī)院醫(yī)學(xué)倫理委員會章程
- xx單位政務(wù)云商用密碼應(yīng)用方案V2.0
- 風(fēng)浪流耦合作用下錨泊式海上試驗(yàn)平臺的水動力特性試驗(yàn)
- 高考英語語法專練定語從句含答案
- 有機(jī)農(nóng)業(yè)種植技術(shù)操作手冊
- 【教案】Unit+5+Fun+Clubs+大單元整體教學(xué)設(shè)計(jì)人教版(2024)七年級英語上冊
- 2024-2025學(xué)年四年級上冊數(shù)學(xué)人教版期末測評卷(含答案)
評論
0/150
提交評論