河北省雞澤縣重點名校2024屆中考數(shù)學模擬預測題含解析_第1頁
河北省雞澤縣重點名校2024屆中考數(shù)學模擬預測題含解析_第2頁
河北省雞澤縣重點名校2024屆中考數(shù)學模擬預測題含解析_第3頁
河北省雞澤縣重點名校2024屆中考數(shù)學模擬預測題含解析_第4頁
河北省雞澤縣重點名校2024屆中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省雞澤縣重點名校2024屆中考數(shù)學模擬預測題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在,0,-1,這四個數(shù)中,最小的數(shù)是()A. B.0 C. D.-12.小宇媽媽上午在某水果超市買了16.5元錢的葡萄,晚上散步經過該水果超市時,發(fā)現(xiàn)同一批葡萄的價格降低了25%,小宇媽媽又買了16.5元錢的葡萄,結果恰好比早上多了0.5千克.若設早上葡萄的價格是x元/千克,則可列方程()A. B.C. D.3.下列運算正確的是()A.a12÷a4=a3 B.a4?a2=a8 C.(﹣a2)3=a6 D.a?(a3)2=a74.A,B兩地相距48千米,一艘輪船從A地順流航行至B地,又立即從B地逆流返回A地,共用去9小時,已知水流速度為4千米/時,若設該輪船在靜水中的速度為x千米/時,則可列方程()A. B.C.+4=9 D.5.已知是一個單位向量,、是非零向量,那么下列等式正確的是()A. B. C. D.6.“龜兔賽跑”是同學們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達終點10分鐘D.烏龜追上兔子用了20分鐘7.如圖,已知△ABC中,∠ABC=45°,F(xiàn)是高AD和BE的交點,CD=4,則線段DF的長度為()A. B.4 C. D.8.已知3a﹣2b=1,則代數(shù)式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣39.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數(shù)是()A.40° B.65° C.70° D.80°10.在平面直角坐標系中,將點P(4,﹣3)繞原點旋轉90°得到P1,則P1的坐標為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)二、填空題(共7小題,每小題3分,滿分21分)11.計算:﹣1﹣2=_____.12.不等式組有2個整數(shù)解,則m的取值范圍是_____.13.某航空公司規(guī)定,乘客所攜帶行李的重量x(kg)與運費y(元)滿足如圖所示的函數(shù)圖象,那么每位乘客最多可免費攜帶____kg的行李.14.同時拋擲兩枚質地均勻的骰子,則事件“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的概率是.15.已知,,,是成比例的線段,其中,,,則_______.16.用配方法將方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n為常數(shù)),則m+n=_____.17.如圖,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,連接AC、BD,若S四邊形ABCD=18,則BD的最小值為_________.三、解答題(共7小題,滿分69分)18.(10分)如圖是8×8的正方形網格,A、B兩點均在格點(即小正方形的頂點)上,試在下面三個圖中,分別畫出一個以A,B,C,D為頂點的格點菱形(包括正方形),要求所畫的三個菱形互不全等.19.(5分)某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發(fā)現(xiàn),該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=﹣2x+1.設這種產品每天的銷售利潤為W元.(1)該農戶想要每天獲得150元得銷售利潤,銷售價應定為每千克多少元?(2)如果物價部門規(guī)定這種農產品的銷售價不高于每千克28元,銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?20.(8分)定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.(1)設三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是,推斷的數(shù)學依據是.(2)如圖②,在△ABC中,∠B=15°,AB=3,BC=8,AD為邊BC的中線,求邊BC的中垂距.(3)如圖③,在矩形ABCD中,AB=6,AD=1.點E為邊CD的中點,連結AE并延長交BC的延長線于點F,連結AC.求△ACF中邊AF的中垂距.21.(10分)俄羅斯世界杯足球賽期間,某商店銷售一批足球紀念冊,每本進價40元,規(guī)定銷售單價不低于44元,且獲利不高于30%.試銷售期間發(fā)現(xiàn),當銷售單價定為44元時,每天可售出300本,銷售單價每上漲1元,每天銷售量減少10本,現(xiàn)商店決定提價銷售.設每天銷售量為y本,銷售單價為x元.請直接寫出y與x之間的函數(shù)關系式和自變量x的取值范圍;當每本足球紀念冊銷售單價是多少元時,商店每天獲利2400元?將足球紀念冊銷售單價定為多少元時,商店每天銷售紀念冊獲得的利潤w元最大?最大利潤是多少元?22.(10分)如圖,一條公路的兩側互相平行,某課外興趣小組在公路一側AE的點A處測得公路對面的點C與AE的夾角∠CAE=30°,沿著AE方向前進15米到點B處測得∠CBE=45°,求公路的寬度.(結果精確到0.1米,參考數(shù)據:≈1.73)23.(12分)“六一”兒童節(jié)前夕,某縣教育局準備給留守兒童贈送一批學習用品,先對紅星小學的留守兒童人數(shù)進行抽樣統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統(tǒng)計圖①和圖②.請根據相關信息,解答下列問題:(1)該校有_____個班級,補全條形統(tǒng)計圖;(2)求該校各班留守兒童人數(shù)數(shù)據的平均數(shù),眾數(shù)與中位數(shù);(3)若該鎮(zhèn)所有小學共有60個教學班,請根據樣本數(shù)據,估計該鎮(zhèn)小學生中,共有多少名留守兒童.24.(14分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】試題分析:因為負數(shù)小于0,正數(shù)大于0,正數(shù)大于負數(shù),所以在,0,-1,這四個數(shù)中,最小的數(shù)是-1,故選D.考點:正負數(shù)的大小比較.2、B【解析】分析:根據數(shù)量=,可知第一次買了千克,第二次買了,根據第二次恰好比第一次多買了0.5千克列方程即可.詳解:設早上葡萄的價格是x元/千克,由題意得,.故選B.點睛:本題考查了分式方程的實際應用,解題的關鍵是讀懂題意,找出列方程所用到的等量關系.3、D【解析】

分別根據同底數(shù)冪的除法、乘法和冪的乘方的運算法則逐一計算即可得.【詳解】解:A、a12÷a4=a8,此選項錯誤;

B、a4?a2=a6,此選項錯誤;

C、(-a2)3=-a6,此選項錯誤;

D、a?(a3)2=a?a6=a7,此選項正確;

故選D.【點睛】本題主要考查冪的運算,解題的關鍵是掌握同底數(shù)冪的除法、乘法和冪的乘方的運算法則.4、A【解析】

根據輪船在靜水中的速度為x千米/時可進一步得出順流與逆流速度,從而得出各自航行時間,然后根據兩次航行時間共用去9小時進一步列出方程組即可.【詳解】∵輪船在靜水中的速度為x千米/時,∴順流航行時間為:,逆流航行時間為:,∴可得出方程:,故選:A.【點睛】本題主要考查了分式方程的應用,熟練掌握順流與逆流速度的性質是解題關鍵.5、B【解析】

長度不為0的向量叫做非零向量,向量包括長度及方向,而長度等于1個單位長度的向量叫做單位向量,注意單位向量只規(guī)定大小沒規(guī)定方向,則可分析求解.【詳解】A.由于單位向量只限制長度,不確定方向,故錯誤;B.符合向量的長度及方向,正確;C.得出的是a的方向不是單位向量,故錯誤;D.左邊得出的是a的方向,右邊得出的是b的方向,兩者方向不一定相同,故錯誤.故答案選B.【點睛】本題考查的知識點是平面向量,解題的關鍵是熟練的掌握平面向量.6、D【解析】分析:根據圖象得出相關信息,并對各選項一一進行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項錯誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項錯誤;兔子是用60分鐘到達終點,烏龜是用50分鐘到達終點,兔子比烏龜晚到達終點10分鐘,故C選項錯誤;在比賽20分鐘時,烏龜和兔子都距起點200米,即烏龜追上兔子用了20分鐘,故D選項正確.故選D.點睛:本題考查了從圖象中獲取信息的能力.正確識別圖象、獲取信息并進行判斷是解題的關鍵.7、B【解析】

求出AD=BD,根據∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根據ASA證△FBD≌△CAD,推出CD=DF即可.【詳解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故選:B.【點睛】此題主要考查了全等三角形的判定,關鍵是找出能使三角形全等的條件.8、B【解析】

先變形,再整體代入,即可求出答案.【詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【點睛】本題考查了求代數(shù)式的值,能夠整體代入是解此題的關鍵.9、C【解析】

根據平行線性質得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數(shù).【詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【點睛】本題考查了平行線性質和角平分線定義,關鍵是求出∠DAC或∠BAC的度數(shù).10、A【解析】

分順時針旋轉,逆時針旋轉兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉可得P′(3,4),P″(?3,?4),故選A.【點睛】本題考查坐標與圖形變換——旋轉,解題的關鍵是利用空間想象能力.二、填空題(共7小題,每小題3分,滿分21分)11、-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案為-3.12、1<m≤2【解析】

首先根據不等式恰好有個整數(shù)解求出不等式組的解集為,再確定.【詳解】不等式組有個整數(shù)解,其整數(shù)解有、這個,.故答案為:.【點睛】此題主要考查了解不等式組,關鍵是正確理解解集的規(guī)律:同大取大,同小取小,大小小大中間找,大大小小找不到.13、2【解析】

設乘客所攜帶行李的重量x(kg)與運費y(元)之間的函數(shù)關系式為y=kx+b,由待定系數(shù)法求出其解即可.【詳解】解:設乘客所攜帶行李的重量x(kg)與運費y(元)之間的函數(shù)關系式為y=kx+b,由題意,得,解得,,則y=30x-1.

當y=0時,

30x-1=0,

解得:x=2.

故答案為:2.【點睛】本題考查了運用待定系數(shù)法求一次函數(shù)的解析式的運用,由函數(shù)值求自變量的值的運用,解答時求出函數(shù)的解析式是關鍵.14、.【解析】試題分析:畫樹狀圖為:共有36種等可能的結果數(shù),其中“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的結果數(shù)為9,所以“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的概率==.故答案為.考點:列表法與樹狀圖法.15、【解析】

如果其中兩條線段的乘積等于另外兩條線段的乘積,則四條線段叫成比例線段.根據定義ad=cb,將a,b及c的值代入即可求得d.【詳解】已知a,b,c,d是成比例線段,根據比例線段的定義得:ad=cb,代入a=3,b=2,c=6,解得:d=4,則d=4cm.故答案為:4【點睛】本題主要考查比例線段的定義.要注意考慮問題要全面.16、1【解析】

方程常數(shù)項移到右邊,兩邊加上25配方得到結果,求出m與n的值即可.【詳解】解:∵x2+10x-11=0,∴x2+10x=11,則x2+10x+25=11+25,即(x+5)2=36,∴m=5、n=36,∴m+n=1,故答案為1.【點睛】此題考查了解一元二次方程-配方法,熟練掌握完全平方公式是解本題的關鍵.17、6【解析】

過A作AM⊥CD于M,過A作AN⊥BC于N,先根據“AAS”證明△DAM≌△BAN,再證明四邊形AMCN為正方形,可求得AC=6,從而當BD⊥AC時BD最小,且最小值為6.【詳解】如下圖,過A作AM⊥CD于M,過A作AN⊥BC于N,則∠MAN=90°,∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,∴∠DAM=∠BAN.∵∠DMA=∠N=90°,AB=AD,∴△DAM≌△BAN,∴AM=AN,∴四邊形AMCN為正方形,∴S四邊形ABCD=S四邊形AMCN=AC2,∴AC=6,∴BD⊥AC時BD最小,且最小值為6.故答案為:6.【點睛】本題考查了全等三角形的判定與性質,正方形的判定與性質,正確作出輔助線是解答本題的關鍵.三、解答題(共7小題,滿分69分)18、見解析【解析】

根據菱形的四條邊都相等,兩條對角線互相垂直平分,可以根據正方形的四邊垂直,將小正方形的邊作為對角線畫菱形;也可以畫出以AB為邊長的正方形,據此相信你可以畫出圖形了,注意:本題答案不唯一.【詳解】如圖為畫出的菱形:【點睛】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法;解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.本題掌握菱形的定義與性質是解題的關鍵.19、(1)該農戶想要每天獲得150元得銷售利潤,銷售價應定為每千克25元或35元;(2)192元.【解析】

(1)直接利用每件利潤×銷量=總利潤進而得出等式求出答案;(2)直接利用每件利潤×銷量=總利潤進而得出函數(shù)關系式,利用二次函數(shù)增減性求出答案.【詳解】(1)根據題意得:(x﹣20)(﹣2x+1)=150,解得:x1=25,x2=35,答:該農戶想要每天獲得150元得銷售利潤,銷售價應定為每千克25元或35元;(2)由題意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,∵a=﹣2,∴拋物線開口向下,當x<30時,y隨x的增大而增大,又由于這種農產品的銷售價不高于每千克28元∴當x=28時,W最大=﹣2×(28﹣30)2+200=192(元).∴銷售價定為每千克28元時,每天的銷售利潤最大,最大利潤是192元.【點睛】此題主要考查了一元二次方程的應用以及二次函數(shù)的應用,正確應用二次函數(shù)增減性是解題關鍵.20、(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等;(2)1;(3).【解析】試題分析:(1)根據線段的垂直平分線的性質即可判斷.(2)如圖②中,作AE⊥BC于E.根據已知得出AE=BE,再求出BD的長,即可求出DE的長.(3)如圖③中,作CH⊥AF于H,先證△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的長,然后證明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等(2)解:如圖②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3,∴AE=BE=3,∵AD為BC邊中線,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴邊BC的中垂距為1(3)解:如圖③中,作CH⊥AF于H.∵四邊形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE==5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴=,∴=,∴EH=,∴△ACF中邊AF的中垂距為21、(1)y=﹣10x+740(44≤x≤52);(2)當每本足球紀念冊銷售單價是50元時,商店每天獲利2400元;(3)將足球紀念冊銷售單價定為52元時,商店每天銷售紀念冊獲得的利潤w元最大,最大利潤是2640元.【解析】

(1)售單價每上漲1元,每天銷售量減少10本,則售單價每上漲(x﹣44)元,每天銷售量減少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用銷售單價不低于44元,且獲利不高于30%確定x的范圍;(2)利用每本的利潤乘以銷售量得到總利潤得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范圍確定銷售單價;(3)利用每本的利潤乘以銷售量得到總利潤得到w=(x﹣40)(﹣10x+740),再把它變形為頂點式,然后利用二次函數(shù)的性質得到x=52時w最大,從而計算出x=52時對應的w的值即可.【詳解】(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根據題意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:當每本足球紀念冊銷售單價是50元時,商店每天獲利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,當x<57時,w隨x的增大而增大,而44≤x≤52,所以當x=52時,w有最大值,最大值為﹣10(52﹣57)2+2890=2640,答:將足球紀念冊銷售單價定為52元時,商店每天銷售紀念冊獲得的利潤w元最大,最大利潤是2640元.【點睛】本題考查了二次函數(shù)的應用,一元二次方程的應用,解決二次函數(shù)應用類問題時關鍵是通過題意,確定出二次函數(shù)的解析式,然后利用二次函數(shù)的性質確定其最大值;在求二次函數(shù)的最值時,一定要注意自變量x的取值范圍.22、公路的寬為20.5米.【解析】

作CD⊥AE,設CD=x米,由∠CBD=45°知BD=CD=x,根據tan∠CAD=,可得=,解之即可.【詳解】解:如圖,過點C作CD⊥AE于點D,設公路的寬CD=x米,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠CAE=30°,∴tan∠CAD==,即=,解得:x=≈20.5(米),答:公路的寬為20.5米.【點睛】本題考查了直角三角形的應用,解答本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論