湖南省邵陽市大祥區(qū)2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題含解析_第1頁
湖南省邵陽市大祥區(qū)2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題含解析_第2頁
湖南省邵陽市大祥區(qū)2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題含解析_第3頁
湖南省邵陽市大祥區(qū)2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題含解析_第4頁
湖南省邵陽市大祥區(qū)2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省邵陽市大祥區(qū)2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.為考察兩名實習(xí)工人的工作情況,質(zhì)檢部將他們工作第一周每天生產(chǎn)合格產(chǎn)品的個數(shù)整理成甲,乙兩組數(shù)據(jù),如下表:甲26778乙23488關(guān)于以上數(shù)據(jù),說法正確的是()A.甲、乙的眾數(shù)相同 B.甲、乙的中位數(shù)相同C.甲的平均數(shù)小于乙的平均數(shù) D.甲的方差小于乙的方差2.二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=﹣x的圖象如圖所示,則方程ax2+(b+)x+c=0(a≠0)的兩根之和()A.大于0 B.等于0 C.小于0 D.不能確定3.在同一平面內(nèi),下列說法:①過兩點有且只有一條直線;②兩條不相同的直線有且只有一個公共點;③經(jīng)過直線外一點有且只有一條直線與已知直線垂直;④經(jīng)過直線外一點有且只有一條直線與已知直線平行,其中正確的個數(shù)為(

)A.1個 B.2個 C.3個 D.4個4.小文同學(xué)統(tǒng)計了某棟居民樓中全體居民每周使用手機支付的次數(shù),并繪制了直方圖.根據(jù)圖中信息,下列說法:①這棟居民樓共有居民140人②每周使用手機支付次數(shù)為28~35次的人數(shù)最多③有的人每周使用手機支付的次數(shù)在35~42次④每周使用手機支付不超過21次的有15人其中正確的是()A.①② B.②③ C.③④ D.④5.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為()A.2 B.2 C.3 D.6.﹣22×3的結(jié)果是()A.﹣5 B.﹣12 C.﹣6 D.127.如圖1,在矩形ABCD中,動點E從A出發(fā),沿A→B→C方向運動,當(dāng)點E到達點C時停止運動,過點E作EF⊥AE交CD于點F,設(shè)點E運動路程為x,CF=y(tǒng),如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,給出下列結(jié)論:①a=3;②當(dāng)CF=時,點E的運動路程為或或,則下列判斷正確的是()A.①②都對 B.①②都錯 C.①對②錯 D.①錯②對8.已知關(guān)于x的方程恰有一個實根,則滿足條件的實數(shù)a的值的個數(shù)為()A.1 B.2 C.3 D.49.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.10.計算的結(jié)果是().A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C,D均在格點上,AB與CD相交于點E.(1)AB的長等于_____;(2)點F是線段DE的中點,在線段BF上有一點P,滿足,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_____.12.如圖,甲、乙兩船同時從港口出發(fā),甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°方向航行,半小時后甲船到達點C,乙船正好到達甲船正西方向的點B,則乙船的航程為______海里(結(jié)果保留根號).13.有一組數(shù)據(jù):3,5,5,6,7,這組數(shù)據(jù)的眾數(shù)為_____.14.利用1個a×a的正方形,1個b×b的正方形和2個a×b的矩形可拼成一個正方形(如圖所示),從而可得到因式分解的公式________.15.已知b是a,c的比例中項,若a=4,c=16,則b=________.16.關(guān)于x的一元二次方程(k-1)x2+6x+k2-k=0的一個根是0,則k的值是______.17.在平面直角坐標(biāo)系中,將點A(﹣3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應(yīng)的點A′的坐標(biāo)是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在?ABCD中,AB=4,AD=5,tanA=,點P從點A出發(fā),沿折線AB﹣BC以每秒1個單位長度的速度向中點C運動,過點P作PQ⊥AB,交折線AD﹣DC于點Q,將線段PQ繞點P順時針旋轉(zhuǎn)90°,得到線段PR,連接QR.設(shè)△PQR與?ABCD重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).(1)當(dāng)點R與點B重合時,求t的值;(2)當(dāng)點P在BC邊上運動時,求線段PQ的長(用含有t的代數(shù)式表示);(3)當(dāng)點R落在?ABCD的外部時,求S與t的函數(shù)關(guān)系式;(4)直接寫出點P運動過程中,△PCD是等腰三角形時所有的t值.19.(5分)某海域有A、B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達位于B港口南偏東75°方向的C處,求:(1)∠C=°;(2)此時刻船與B港口之間的距離CB的長(結(jié)果保留根號).20.(8分)某年級組織學(xué)生參加夏令營活動,本次夏令營分為甲、乙、丙三組進行活動.下面兩幅統(tǒng)計圖反映了學(xué)生報名參加夏令營的情況,請你根據(jù)圖中的信息回答下列問題:該年級報名參加丙組的人數(shù)為;該年級報名參加本次活動的總?cè)藬?shù),并補全頻數(shù)分布直方圖;根據(jù)實際情況,需從甲組抽調(diào)部分同學(xué)到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,應(yīng)從甲組抽調(diào)多少名學(xué)生到丙組?21.(10分)某地一路段修建,甲隊單獨完成這項工程需要60天,若由甲隊先做5天,再由甲、乙兩隊合作9天,共完成這項工程的三分之一.(1)求甲、乙兩隊合作完成這項工程需要多少天?(2)若甲隊的工作效率提高20%,乙隊工作效率提高50%,甲隊施工1天需付工程款4萬元,乙隊施工一天需付工程款2.5萬元,現(xiàn)由甲乙兩隊合作若干天后,再由乙隊完成剩余部分,在完成此項工程的工程款不超過190萬元的條件下要求盡早完成此項工程,則甲、乙兩隊至多要合作多少天?22.(10分)如圖,AB是半徑為2的⊙O的直徑,直線l與AB所在直線垂直,垂足為C,OC=3,P是圓上異于A、B的動點,直線AP、BP分別交l于M、N兩點.(1)當(dāng)∠A=30°時,MN的長是;(2)求證:MC?CN是定值;(3)MN是否存在最大或最小值,若存在,請寫出相應(yīng)的最值,若不存在,請說明理由;(4)以MN為直徑的一系列圓是否經(jīng)過一個定點,若是,請確定該定點的位置,若不是,請說明理由.23.(12分)如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結(jié)PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.(1)求證:PA是⊙O的切線;(2)若tan∠BAD=,且OC=4,求BD的長.24.(14分)如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.求證:DE是⊙O的切線.求DE的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

分別根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、方差的定義進行求解后進行判斷即可得.【詳解】甲:數(shù)據(jù)7出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為7,排序后最中間的數(shù)是7,所以中位數(shù)是7,,=4.4,乙:數(shù)據(jù)8出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為8,排序后最中間的數(shù)是4,所以中位數(shù)是4,,=6.4,所以只有D選項正確,故選D.【點睛】本題考查了眾數(shù)、中位數(shù)、平均數(shù)、方差,熟練掌握相關(guān)定義及求解方法是解題的關(guān)鍵.2、C【解析】

設(shè)的兩根為x1,x2,由二次函數(shù)的圖象可知,;設(shè)方程的兩根為m,n,再根據(jù)根與系數(shù)的關(guān)系即可得出結(jié)論.【詳解】解:設(shè)的兩根為x1,x2,∵由二次函數(shù)的圖象可知,,.設(shè)方程的兩根為m,n,則.故選C.【點睛】本題考查的是拋物線與x軸的交點,熟知拋物線與x軸的交點與一元二次方程根的關(guān)系是解答此題的關(guān)鍵.3、C【解析】

根據(jù)直線的性質(zhì)公理,相交線的定義,垂線的性質(zhì),平行公理對各小題分析判斷后即可得解.【詳解】解:在同一平面內(nèi),①過兩點有且只有一條直線,故①正確;②兩條不相同的直線相交有且只有一個公共點,平行沒有公共點,故②錯誤;③在同一平面內(nèi),經(jīng)過直線外一點有且只有一條直線與已知直線垂直,故③正確;④經(jīng)過直線外一點有且只有一條直線與已知直線平行,故④正確,綜上所述,正確的有①③④共3個,故選C.【點睛】本題考查了平行公理,直線的性質(zhì),垂線的性質(zhì),以及相交線的定義,是基礎(chǔ)概念題,熟記概念是解題的關(guān)鍵.4、B【解析】

根據(jù)直方圖表示的意義求得統(tǒng)計的總?cè)藬?shù),以及每組的人數(shù)即可判斷.本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認(rèn)真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解.【詳解】解:①這棟居民樓共有居民3+10+15+22+30+25+20=125人,此結(jié)論錯誤;②每周使用手機支付次數(shù)為28~35次的人數(shù)最多,此結(jié)論正確;③每周使用手機支付的次數(shù)在35~42次所占比例為,此結(jié)論正確;④每周使用手機支付不超過21次的有3+10+15=28人,此結(jié)論錯誤;故選:B.【點睛】此題考查直方圖的意義,解題的關(guān)鍵在于理解直方圖表示的意義求得統(tǒng)計的數(shù)據(jù)5、A【解析】連接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B關(guān)于AC對稱,則BE交于AC的點是P點,此時PD+PE最小,∵在AC上取任何一點(如Q點),QD+QE都大于PD+PE(BE),∴此時PD+PE最小,此時PD+PE=BE,∵正方形的面積是12,等邊三角形ABE,∴BE=AB=,即最小值是2,故選A.【點睛】本題考查了正方形的性質(zhì),等邊三角形的性質(zhì),軸對稱-最短路線問題等知識點的應(yīng)用,關(guān)鍵是找出PD+PE最小時P點的位置.6、B【解析】

先算乘方,再算乘法即可.【詳解】解:﹣22×3=﹣4×3=﹣1.故選:B.【點睛】本題主要考查了有理數(shù)的混合運算,熟練掌握法則是解答本題的關(guān)鍵.有理數(shù)的混合運算,先乘方,再乘除,后加減,有括號的先算括號內(nèi)的.7、A【解析】

由已知,AB=a,AB+BC=5,當(dāng)E在BC上時,如圖,可得△ABE∽△ECF,繼而根據(jù)相似三角形的性質(zhì)可得y=﹣,根據(jù)二次函數(shù)的性質(zhì)可得﹣,由此可得a=3,繼而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得當(dāng)E在AB上時,y=時,x=,據(jù)此即可作出判斷.【詳解】解:由已知,AB=a,AB+BC=5,當(dāng)E在BC上時,如圖,∵E作EF⊥AE,∴△ABE∽△ECF,∴,∴,∴y=﹣,∴當(dāng)x=時,﹣,解得a1=3,a2=(舍去),∴y=﹣,當(dāng)y=時,=﹣,解得x1=,x2=,當(dāng)E在AB上時,y=時,x=3﹣=,故①②正確,故選A.【點睛】本題考查了二次函數(shù)的應(yīng)用,相似三角形的判定與性質(zhì),綜合性較強,弄清題意,正確畫出符合條件的圖形,熟練運用二次函數(shù)的性質(zhì)以及相似三角形的判定與性質(zhì)是解題的關(guān)鍵.8、C【解析】

先將原方程變形,轉(zhuǎn)化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數(shù)根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數(shù)根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數(shù)根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應(yīng)的原方程的根.【詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數(shù)根,即△=9﹣3×2(3﹣a)=1.解得a=.當(dāng)a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數(shù)根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當(dāng)x=1時,代入①式得3﹣a=1,即a=3.當(dāng)a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當(dāng)x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當(dāng)a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數(shù)根時,所求的a的值分別是,3,5共3個.故選C.【點睛】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進行討論.理解分式方程產(chǎn)生增根的原因及一元二次方程解的情況從而正確進行分類是解題的關(guān)鍵.9、A【解析】∵△DEF是△AEF翻折而成,

∴△DEF≌△AEF,∠A=∠EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,

∴∠BED=∠CDF,

設(shè)CD=1,CF=x,則CA=CB=2,

∴DF=FA=2-x,

∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,

解得x=,

∴sin∠BED=sin∠CDF=.

故選:A.10、D【解析】

根據(jù)同底數(shù)冪的乘除法運算進行計算.【詳解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案選D.【點睛】本題主要考查同底數(shù)冪的乘除運算,解題的關(guān)鍵是知道:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.二、填空題(共7小題,每小題3分,滿分21分)11、見圖形【解析】分析:(Ⅰ)利用勾股定理計算即可;(Ⅱ)連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F,因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K,因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3;詳解:(Ⅰ)AB的長==;(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格點G、H,連接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.∵BI∥DJ,∴BK:DK=BI:DJ=5:2.連接EK交BF于P,可證BP:PF=5:3.故答案為(Ⅰ);(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F.因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3.點睛:本題考查了作圖﹣應(yīng)用與設(shè)計,平行線分線段成比例定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,所以中考??碱}型.12、10海里.【解析】

本題可以求出甲船行進的距離AC,根據(jù)三角函數(shù)就可以求出AB,即可求出乙船的路程.【詳解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到達甲船正西方向的B點,∴∠C=30°,∴AB=AC?tan30°=30×=10海里.答:乙船的路程為10海里.故答案為10海里.【點睛】本題主要考查的是解直角三角形的應(yīng)用-方向角問題及三角函數(shù)的定義,理解方向角的定義是解決本題的關(guān)鍵.13、1【解析】

根據(jù)眾數(shù)的概念進行求解即可得.【詳解】在數(shù)據(jù)3,1,1,6,7中1出現(xiàn)次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,故答案為:1.【點睛】本題考查了眾數(shù)的概念,熟知一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù)是解題的關(guān)鍵.14、a1+1ab+b1=(a+b)1【解析】試題分析:兩個正方形的面積分別為a1,b1,兩個長方形的面積都為ab,組成的正方形的邊長為a+b,面積為(a+b)1,所以a1+1ab+b1=(a+b)1.點睛:本題考查了運用完全平方公式分解因式,關(guān)鍵是理解題中給出的各個圖形之間的面積關(guān)系.15、±8【解析】

根據(jù)比例中項的定義即可求解.【詳解】∵b是a,c的比例中項,若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案為±8【點睛】此題考查了比例中項的定義,如果作為比例線段的內(nèi)項是兩條相同的線段,即a∶b=b∶c或,那么線段b叫做線段a、c的比例中項.16、2.【解析】試題解析:由于關(guān)于x的一元二次方程的一個根是2,把x=2代入方程,得,解得,k2=2,k2=2當(dāng)k=2時,由于二次項系數(shù)k﹣2=2,方程不是關(guān)于x的二次方程,故k≠2.所以k的值是2.故答案為2.17、(0,0)【解析】

根據(jù)坐標(biāo)的平移規(guī)律解答即可.【詳解】將點A(-3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應(yīng)的點A′的坐標(biāo)是(-3+3,2-2),即(0,0),故答案為(0,0).【點睛】此題主要考查坐標(biāo)與圖形變化-平移.平移中點的變化規(guī)律是:橫坐標(biāo)右移加,左移減;縱坐標(biāo)上移加,下移減.三、解答題(共7小題,滿分69分)18、(1);(2)(9﹣t);(3)①S=﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.【解析】

(1)根據(jù)題意點R與點B重合時t+t=3,即可求出t的值;(2)根據(jù)題意運用t表示出PQ即可;(3)當(dāng)點R落在□ABCD的外部時可得出t的取值范圍,再根據(jù)等量關(guān)系列出函數(shù)關(guān)系式;(3)根據(jù)等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵將線段PQ繞點P順時針旋轉(zhuǎn)90°,得到線段PR,∴PQ=PR,∠QPR=90°,∴△QPR為等腰直角三角形.當(dāng)運動時間為t秒時,AP=t,PQ=PQ=AP?tanA=t.∵點R與點B重合,∴AP+PR=t+t=AB=3,解得:t=.(2)當(dāng)點P在BC邊上時,3≤t≤9,CP=9﹣t,∵tanA=,∴tanC=,sinC=,∴PQ=CP?sinC=(9﹣t).(3)①如圖1中,當(dāng)<t≤3時,重疊部分是四邊形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴=,∴=,∴KM=(t﹣3)=t﹣,∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.②如圖2中,當(dāng)3<t≤3時,重疊部分是四邊形PQKB.S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.③如圖3中,當(dāng)3<t<9時,重疊部分是△PQK.S=?S△PQC=××(9﹣t)?(9﹣t)=(9﹣t)2.(3)如圖3中,①當(dāng)DC=DP1=3時,易知AP1=3,t=3.②當(dāng)DC=DP2時,CP2=2?CD?,∴BP2=,∴t=3+.③當(dāng)CD=CP3時,t=4.④當(dāng)CP3=DP3時,CP3=2÷,∴t=9﹣=.綜上所述,滿足條件的t的值為3或或4或.【點睛】本題考查四邊形綜合題、動點問題、平行四邊形的性質(zhì)、多邊形的面積、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.19、(1)60;(2)【解析】(1)由平行線的性質(zhì)以及方向角的定義得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根據(jù)方向角的定義得出∠BAC=∠BAE+∠CAE=75°,利用三角形內(nèi)角和定理求出∠C=60°;(2)作AD⊥BC交BC于點D,解Rt△ABD,得出BD=AD=30,解Rt△ACD,得出CD=10,根據(jù)BC=BD+CD即可求解.解:(1)如圖所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABC=45°,∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.故答案為60;(2)如圖,作AD⊥BC于D,在Rt△ABD中,∵∠ABD=45°,AB=60,∴AD=BD=30.在Rt△ACD中,∵∠C=60°,AD=30,∴tanC=,∴CD==10,∴BC=BD+CD=30+10.答:該船與B港口之間的距離CB的長為(30+10)海里.20、(1)21人;(2)10人,見解析(3)應(yīng)從甲抽調(diào)1名學(xué)生到丙組【解析】(1)參加丙組的人數(shù)為21人;(2)21÷10%=10人,則乙組人數(shù)=10-21-11=10人,如圖:(3)設(shè)需從甲組抽調(diào)x名同學(xué)到丙組,根據(jù)題意得:3(11-x)=21+x解得x=1.答:應(yīng)從甲抽調(diào)1名學(xué)生到丙組(1)直接根據(jù)條形統(tǒng)計圖獲得數(shù)據(jù);(2)根據(jù)丙組的21人占總體的10%,即可計算總體人數(shù),然后計算乙組的人數(shù),補全統(tǒng)計圖;(3)設(shè)需從甲組抽調(diào)x名同學(xué)到丙組,根據(jù)丙組人數(shù)是甲組人數(shù)的3倍列方程求解21、(1)甲、乙兩隊合作完成這項工程需要36天;(2)甲、乙兩隊至多要合作7天【解析】

(1)設(shè)甲、乙兩隊合作完成這項工程需要x天,根據(jù)條件:甲隊先做5天,再由甲、乙合作9天,共完成總工作量的13(2)設(shè)甲、乙兩隊最多合作元天,先求出甲、乙兩隊合作一天完成工程的多少,再根據(jù)完成此項工程的工程款不超過190萬元,列出不等式,求解即可得出答案.【詳解】(1)設(shè)甲、乙兩隊合作完成這項工程需要x天根據(jù)題意得,560解得x=36,經(jīng)檢驗x=36是分式方程的解,答:甲、乙兩隊合作完成這項工程需要36天,(2)1設(shè)甲、乙需要合作y天,根據(jù)題意得,4+2.5y+2.5×解得y≤7答:甲、乙兩隊至多要合作7天.【點睛】本題考查了分式方程的應(yīng)用和一元一次不等式的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程求解,注意檢驗.22、(1);(2)MC?NC=5;(3)a+b的最小值為2;(4)以MN為直徑的一系列圓經(jīng)過定點D,此定點D在直線AB上且CD的長為.【解析】

(1)由題意得AO=OB=2、OC=3、AC=5、BC=1,根據(jù)MC=ACtan∠A=、CN=可得答案;(2)證△ACM∽△NCB得,由此即可求得答案;(3)設(shè)MC=a、NC=b,由(2)知ab=5,由P是圓上異于A、B的動點知a>0,可得b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)得a+b不存在最大值,當(dāng)a=b時,a+b最小,據(jù)此求解可得;(4)設(shè)該圓與AC的交點為D,連接DM、DN,證△MDC∽△DNC得,即MC?NC=DC2=5,即DC=,據(jù)此知以MN為直徑的一系列圓經(jīng)過定點D,此頂點D在直線AB上且CD的長為.【詳解】(1)如圖所示,根據(jù)題意知,AO=OB=2、OC=3,則AC=OA+OC=5,BC=OC﹣OB=1,∵AC⊥直線l,∴∠ACM=∠ACN=90°,∴MC=ACtan∠A=5×=,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=,則MN=MC+CN=+=,故答案為:;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC?NC=AC?BC=5×1=5;(3)設(shè)MC=a、NC=b,由(2)知ab=5,∵P是圓上異于A、B的動點,∴a>0,∴b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)知,a+b不存在最大值,當(dāng)a=b時,a+b最小,由a=b得a=,解之得a=(負值舍去),此時b=,此時a+b的最小值為2;(4)如圖,設(shè)該圓與AC的交點為D,連接DM、DN,∵MN

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論