四川省成都崇慶中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
四川省成都崇慶中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
四川省成都崇慶中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
四川省成都崇慶中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
四川省成都崇慶中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

四川省成都崇慶中學(xué)2025屆九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在⊙O中,直徑CD⊥弦AB,則下列結(jié)論中正確的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D2.若是一元二次方程,則的值是()A.-1 B.0 C.1 D.±13.如圖,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.動點P,Q分別從點A,B同時開始移動,點P的速度為1cm/秒,點Q的速度為2cm/秒,點Q移動到點C后停止,點P也隨之停止運動.下列時間瞬間中,能使△PBQ的面積為15cm2的是()A.2秒鐘 B.3秒鐘 C.4秒鐘 D.5秒鐘4.關(guān)于二次函數(shù),下列說法錯誤的是()A.它的圖象開口方向向上 B.它的圖象頂點坐標(biāo)為(0,4)C.它的圖象對稱軸是y軸 D.當(dāng)時,y有最大值45.如圖,點的坐標(biāo)是,是等邊角形,點在第一象限,若反比例函數(shù)的圖象經(jīng)過點,則的值是()A. B. C. D.6.已知二次函數(shù)y=-x2+2mx+2,當(dāng)x<-2時,y的值隨x的增大而增大,則實數(shù)m()A.m=-2 B.m>-2 C.m≥-2 D.m≤-27.已知函數(shù)y=ax2+bx+c(a≠1)的圖象如圖,給出下列4個結(jié)論:①abc>1;②b2>4ac;③4a+2b+c>1;④2a+b=1.其中正確的有()個.A.1 B.2 C.3 D.48.書架上放著三本小說和兩本散文,小明從中隨機抽取兩本,兩本都是小說的概率是()A. B. C. D.9.把拋物線向下平移2個單位,再向右平移1個單位,所得到的拋物線是A. B. C. D.10.如圖,在中,為上一點,連接、,且、交于點,,則等于()A. B. C. D.11.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.12.如圖,A,B是反比例函數(shù)y=圖象上兩點,AC⊥y軸于C,BD⊥x軸于D,AC=BD=OC,S四邊形ABCD=9,則k值為()A.8 B.10 C.12 D.1.二、填空題(每題4分,共24分)13.如圖,⊙O的半徑為2,AB為⊙O的直徑,P為AB延長線上一點,過點P作⊙O的切線,切點為C.若PC=2,則BC的長為______.14.如圖,A、B兩點在雙曲線y=上,分別經(jīng)過A、B兩點向坐標(biāo)軸作垂線段,已知S陰影部分=m,則S1+S2=_____.15.如圖,在△ABC中,AB=AC=1,點D、E在直線BC上運動,設(shè)BD=x,CE=y(tǒng).如果∠BAC=30°,∠DAE=105°,則y與x之間的函數(shù)關(guān)系式為________________.16.如果拋物線與軸的一個交點的坐標(biāo)是,那么與軸的另一個交點的坐標(biāo)是___________.17.已知扇形的弧長為2π,圓心角為60°,則它的半徑為________.18.如圖,半徑為3的圓經(jīng)過原點和點,點是軸左側(cè)圓優(yōu)弧上一點,則_____.三、解答題(共78分)19.(8分)如圖已知直線與拋物線y=ax2+bx+c相交于A(﹣1,0),B(4,m)兩點,拋物線y=ax2+bx+c交y軸于點C(0,﹣),交x軸正半軸于D點,拋物線的頂點為M.(1)求拋物線的解析式;(2)設(shè)點P為直線AB下方的拋物線上一動點,當(dāng)△PAB的面積最大時,求△PAB的面積及點P的坐標(biāo);(3)若點Q為x軸上一動點,點N在拋物線上且位于其對稱軸右側(cè),當(dāng)△QMN與△MAD相似時,求N點的坐標(biāo).20.(8分)如圖,AB為⊙O的直徑,C為⊙O上一點,D為的中點.過點D作直線AC的垂線,垂足為E,連接OD.(1)求證:∠A=∠DOB;(2)DE與⊙O有怎樣的位置關(guān)系?請說明理由.21.(8分)如圖,一次函數(shù)y=kx+b的圖象分別交x軸,y軸于A(4.0),B(0,2)兩點,與反比例函數(shù)y=的圖象交于C.D兩點,CE⊥x軸于點E且CE=1.(1)求反比例函數(shù)與一次函數(shù)的解析式;(2)根據(jù)圖象直接寫出:不等式0<kx+b<的解集.22.(10分)如圖,在△ABC中,CD平分∠ACB,DE∥BC,若,且AC=14,求DE的長.23.(10分)小明同學(xué)用紙板制作了一個圓錐形漏斗模型,如圖所示,它的底面半徑,高,求這個圓錐形漏斗的側(cè)面積.24.(10分)解方程:(1)x2﹣2x﹣3=1;(2)x(x+1)=1.25.(12分)(1)解方程:x(x+3)=–2;(2)計算:sin45°+3cos60°–4tan45°.26.如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于第二、四象限內(nèi)的A,B兩點,與x軸交于點C,與y軸交于點D,點B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC=.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)連接OB,求△AOB的面積.

參考答案一、選擇題(每題4分,共48分)1、B【解析】先利用垂徑定理得到弧AD=弧BD,然后根據(jù)圓周角定理得到∠C=∠BOD,從而可對各選項進行判斷.【詳解】解:∵直徑CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故選B.【點睛】本題考查了垂徑定理和圓周角定理,垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。畧A周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.2、C【分析】根據(jù)一元二次方程的概念即可列出等式,求出m的值.【詳解】解:若是一元二次方程,則,解得,又∵,∴,故,故答案為C.【點睛】本題考查了一元二次方程的定義,熟知一元二次方程的定義并列出等式是解題的關(guān)鍵.3、B【詳解】解:設(shè)動點P,Q運動t秒后,能使△PBQ的面積為15cm1,則BP為(8﹣t)cm,BQ為1tcm,由三角形的面積計算公式列方程得:×(8﹣t)×1t=15,解得t1=3,t1=5(當(dāng)t=5時,BQ=10,不合題意,舍去).故當(dāng)動點P,Q運動3秒時,能使△PBQ的面積為15cm1.故選B.【點睛】此題考查借助三角形的面積計算公式來研究圖形中的動點問題.4、D【分析】由拋物線的解析式可求得其開口方向、對稱軸、函數(shù)的最值即可判斷.【詳解】∵,∴拋物線開口向上,對稱軸為直線x=0,頂點為(0,4),當(dāng)x=0時,有最小值4,故A、B、C正確,D錯誤;故選:D.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x?h)2+k中,對稱軸為x=h,頂點坐標(biāo)為(h,k).5、D【分析】首先過點B作BC垂直O(jiān)A于C,根據(jù)AO=4,△ABO是等辺三角形,得出B點坐標(biāo),迸而求出k的值.【詳解】解:過點B作BC垂直O(jiān)A于C,

∵點A的坐標(biāo)是(2,0)

,AO=4,

∵△ABO是等邊三角形∴OC=

2,BC=∴點B的坐標(biāo)是(2,),把(2,)代入,得:k=xy=故選:D【點睛】本題考查的是利用等邊三角形的性質(zhì)來確定反比例函數(shù)的k值.6、C【解析】根據(jù)二次函數(shù)的性質(zhì),確定拋物線的對稱軸及開口方向得出函數(shù)的增減性,結(jié)合題意確定m值的范圍.【詳解】解:拋物線的對稱軸為直線∵,拋物線開口向下,∴當(dāng)時,y的值隨x值的增大而增大,∵當(dāng)時,y的值隨x值的增大而增大,∴,故選:C.【點睛】本題考查了二次函數(shù)的性質(zhì),主要利用了二次函數(shù)的增減性,由系數(shù)的符號特征得出函數(shù)性質(zhì)是解答此題的關(guān)鍵.7、C【分析】二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點來確定,結(jié)合拋物線與x軸交點的個數(shù)來分析解答.【詳解】解:①由拋物線的對稱軸可知:>1,∴ab<1,由拋物線與y軸的交點可知:c>1,∴abc<1,故①錯誤;②由圖象可知:△>1,∴b2?4ac>1,即b2>4ac,故②正確;③∵(1,c)關(guān)于直線x=1的對稱點為(2,c),而x=1時,y=c>1,∴x=2時,y=c>1,∴y=4a+2b+c>1,故③正確;④∵,∴b=?2a,∴2a+b=1,故④正確.故選C.【點睛】本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系,解題的關(guān)鍵是熟練運用二次函數(shù)的圖象與性質(zhì),屬于中等題型.8、A【分析】畫樹狀圖(用A、B、C表示三本小說,a、b表示兩本散文)展示所有20種等可能的結(jié)果數(shù),找出從中隨機抽取2本都是小說的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:(用A、B、C表示三本小說,a、b表示兩本散文)共有20種等可能的結(jié)果數(shù),其中從中隨機抽取2本都是小說的結(jié)果數(shù)為6,∴從中隨機抽取2本都是小說的概率==.故選:A.【點睛】本題主要考查等可能事件的概率,掌握畫樹狀圖以及概率公式,是解題的關(guān)鍵.9、D【解析】根據(jù)平移概念,圖形平移變換,圖形上每一點移動規(guī)律都是一樣的,也可用拋物線頂點移動,根據(jù)點的坐標(biāo)是平面直角坐標(biāo)系中的平移規(guī)律:“左加右減,上加下減.”,頂點(-1,0)→(0,-2).因此,所得到的拋物線是.故選D.10、A【分析】根據(jù)平行四邊形得出,再根據(jù)相似三角形的性質(zhì)即可得出答案.【詳解】四邊形ABCD為平行四邊形故選A.【點睛】本題考查了相似三角形的判定及性質(zhì),熟練掌握性質(zhì)定理是解題的關(guān)鍵.11、C【解析】連接OD,根據(jù)勾股定理求出CD,根據(jù)直角三角形的性質(zhì)求出∠AOD,根據(jù)扇形面積公式、三角形面積公式計算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關(guān)鍵.12、B【分析】分別延長CA、DB,它們相交于E,如圖,設(shè)AC=t,則BD=t,OC=5t,根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征得到k=OD?t=t?5t,則OD=5t,所以B點坐標(biāo)為(5t,t),于是AE=CE﹣CA=4t,BE=DE﹣BD=4t,再利用S四邊形ABCD=S△ECD﹣S△EAB得到?5t?5t﹣?4t?4t=9,解得t2=2,然后根據(jù)k=t?5t進行計算.【詳解】解:分別延長CA、DB,它們相交于E,如圖,設(shè)AC=t,則BD=t,OC=5t,∵A,B是反比例函數(shù)y=圖象上兩點,∴k=OD?t=t?5t,∴OD=5t,∴B點坐標(biāo)為(5t,t),∴AE=CE﹣CA=4t,BE=DE﹣BD=4t,∵S四邊形ABCD=S△ECD﹣S△EAB,∴?5t?5t﹣?4t?4t=9,∴t2=2,∴k=t?5t=5t2=5×2=2.故選:B.【點睛】本題考查了比例系數(shù)k的幾何意義:在反比例函數(shù)y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.二、填空題(每題4分,共24分)13、2【分析】連接OC,根據(jù)勾股定理計算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,則∠COP=60°,可得△OCB是等邊三角形,從而得結(jié)論.【詳解】連接OC,∵PC是⊙O的切線,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等邊三角形,∴BC=OB=2,故答案為2【點睛】本題考查切線的性質(zhì)、等腰三角形的性質(zhì)、等邊三角形的判定等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.14、8﹣2m【分析】根據(jù)反比例函數(shù)系數(shù)k的幾何意義可得S四邊形AEOF=4,S四邊形BDOC=4,根據(jù)S1+S2=S四邊形AEOF+S四邊形BDOC﹣2×S陰影,可求S1+S2的值.【詳解】解:如圖,∵A、B兩點在雙曲線y=上,∴S四邊形AEOF=4,S四邊形BDOC=4,∴S1+S2=S四邊形AEOF+S四邊形BDOC﹣2×S陰影,∴S1+S2=8﹣2m故答案為:8﹣2m.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,熟練掌握在反比例函數(shù)圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.15、【解析】∵∠BAC=30°,AB=AC,∴∠ACB=∠ABC=,∴∠ACE=∠ABD=180°-75°=105°,∵∠DAE=105°,∠BAC=30°,∴∠DAB+∠CAE=105°-30°=75°,又∵∠DAB+∠ADB=∠ABC=75°,∴∠ADB=∠CAE.∴△ADB∽△EAC,∴,即,∴.故答案為.16、【分析】根據(jù)拋物線y=ax2+2ax+c,可以得到該拋物線的對稱軸,然后根據(jù)二次函數(shù)圖象具有對稱性和拋物線y=ax2+2ax+c與x軸的一個交點的坐標(biāo)是(1,0),可以得到該拋物線與x軸的另一個交點坐標(biāo).【詳解】∵拋物線y=ax2+2ax+c=a(x+1)2-a+c,

∴該拋物線的對稱軸是直線x=-1,

∵拋物線y=ax2+2ax+c與x軸的一個交點的坐標(biāo)是(1,0),

∴該拋物線與x軸的另一個交點的坐標(biāo)是(-3,0),

故答案為:(-3,0).【點睛】此題考查二次函數(shù)的圖形及其性質(zhì),解題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.17、6.【解析】分析:設(shè)扇形的半徑為r,根據(jù)扇形的面積公式及扇形的面積列出方程,求解即可.詳解:設(shè)扇形的半徑為r,根據(jù)題意得:60πr解得:r=6故答案為6.點睛:此題考查弧長公式,關(guān)鍵是根據(jù)弧長公式解答.18、【分析】由題意運用圓周角定理以及銳角三角函數(shù)的定義進行分析即可得解.【詳解】解:假設(shè)圓與下軸的另一交點為D,連接BD,∵,∴BD為直徑,,∵點,∴OB=2,∴,∵OB為和公共邊,∴,∴.故答案為:.【點睛】本題考查的是圓周角定理、銳角三角函數(shù)的定義,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等以及熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.三、解答題(共78分)19、(1);(2),P(,);(3)N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).【分析】(1)將點代入,求出,將點代入,即可求函數(shù)解析式;(2)如圖,過作軸,交于,求出的解析式,設(shè),表示點坐標(biāo),表示長度,利用,建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)求最值即可,(3)可證明△MAD是等腰直角三角形,由△QMN與△MAD相似,則△QMN是等腰直角三角形,設(shè)①當(dāng)MQ⊥QN時,N(3,0);②當(dāng)QN⊥MN時,過點N作NR⊥x軸,過點M作MS⊥RN交于點S,由(AAS),建立方程求解;③當(dāng)QN⊥MQ時,過點Q作x軸的垂線,過點N作NS∥x軸,過點作R∥x軸,與過M點的垂線分別交于點S、R;可證△MQR≌△QNS(AAS),建立方程求解;④當(dāng)MN⊥NQ時,過點M作MR⊥x軸,過點Q作QS⊥x軸,過點N作x軸的平行線,與兩垂線交于點R、S;可證△MNR≌△NQS(AAS),建立方程求解.【詳解】解:(1)將點代入,∴,將點代入,解得:,∴函數(shù)解析式為;(2)如圖,過作軸,交于,設(shè)為,因為:所以:,解得:,所以直線AB為:,設(shè),則,所以:,所以:,當(dāng),,此時:.(3)∵,∴,∴△MAD是等腰直角三角形.∵△QMN與△MAD相似,∴△QMN是等腰直角三角形,設(shè)①如圖1,當(dāng)MQ⊥QN時,此時與重合,N(3,0);②如圖2,當(dāng)QN⊥MN時,過點N作NR⊥x軸于,過點M作MS⊥RN交于點S.∵QN=MN,∠QNM=90°,∴(AAS),∴,∴,,∴,∴;③如圖3,當(dāng)QN⊥MQ時,過點Q作x軸的垂線,過點N作NS∥x軸,過點作R∥x軸,與過點的垂線分別交于點S、R;∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),,,∴,∴t=5,(舍去負(fù)根)∴N(5,6);④如圖4,當(dāng)MN⊥NQ時,過點M作MR⊥x軸,過點Q作QS⊥x軸,過點N作x軸的平行線,與兩垂線交于點R、S;∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,∴,∴.,∴,∴;綜上所述:或或N(5,6)或.【點睛】本題考查二次函數(shù)的綜合;熟練掌握二次函數(shù)的圖象及性質(zhì),數(shù)形結(jié)合解題是關(guān)鍵.20、(1)見解析;(2)相切,理由見解析【分析】(1)連接OC,由D為的中點,得到,根據(jù)圓周角定理即可得到結(jié)論;

(2)根據(jù)平行線的判定定理得到AE∥OD,根據(jù)平行線的性質(zhì)得到OD⊥DE,從而得到結(jié)論.【詳解】(1)證明:連接OC,∵D為的中點,∴,∴∠BOD=∠BOC,由圓周角定理可知,∠BAC=∠BOC,∴∠A=∠DOB;(2)解:DE與⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE與⊙O相切.【點睛】本題考查了直線與圓的位置關(guān)系,圓周角定理,熟練掌握切線的判定定理是解題的關(guān)鍵.21、(1)y=﹣+2,y=﹣;(2)﹣2<x<4【分析】(1)根據(jù)待定系數(shù)法即可求得一次函數(shù)的解析式,由題意可知C的縱坐標(biāo)為1,代入一次函數(shù)解析式即可求得C的坐標(biāo),然后代入y=求得m的值,即可求得反比例函數(shù)的解析式;(2)根據(jù)圖象找出y=kx+b在x軸上方且在y=的下方的圖象對應(yīng)的x的范圍.【詳解】(1)根據(jù)題意,得,解得k=﹣,b=2,所以一次函數(shù)的解析式為y=﹣+2,由題意可知,點C的縱坐標(biāo)為1.把y=1代入y=﹣+2,中,得x=﹣2.所以點C坐標(biāo)為(﹣2,1).把點C坐標(biāo)(﹣2,1)代入y=中,解得m=﹣3.所以反比例函數(shù)的解析式為y=﹣;(2)根據(jù)圖像可得:不等式4<kx+b<的解集是:﹣2<x<4.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.也考查了觀察函數(shù)圖象的能力.22、DE=8.【分析】先根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)證得,再根據(jù)平行線分線段成比例即可得.【詳解】如圖,CD平分又,即故DE的長為8.【點睛】本題考查了角平分線的性質(zhì)、平行線的性質(zhì)、等腰三角形的性質(zhì)、平行線分線段成比例,通過等角對等邊證出是解題關(guān)鍵.23、【解析】首先根據(jù)底面半徑OB=3cm,高OC=4cm,求出圓錐的母線長,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論