版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第二章推理與證明2.2直接證明與間接證明綜合法與分析法[A級(jí)基礎(chǔ)鞏固]一、選擇題1.用分析法證明:要證①A>B,只需證②C<D,這里①是②的()A.充分條件 B.必要條件C.充要條件 D.既不充分也不必要條件解析:分析法證明的本質(zhì)是證明結(jié)論的充分條件成立,即②是①的充分條件,所以①是②的必要條件.故答案為B.答案:B2.要證明eq\r(3)+eq\r(7)<2eq\r(5),可選擇的方法有以下幾種,其中最合理的是()A.綜合法 B.分析法C.類比法 D.歸納法解析:要證明eq\r(3)+eq\r(7)<2eq\r(5),只需證(eq\r(3)+eq\r(7))2<(2eq\r(5))2,即10+2eq\r(21)<20,只需證2eq\r(21)<10,兩邊平方,得84<100,此不等式恒成立,故eq\r(3)+eq\r(7)<2eq\r(5)成立,由證明過程可知分析法最合理.答案:B3.在△ABC中,已知sinAcosA=sinBcosB,則該三角形是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形解析:由sinAcosA=sinBcosB得sin2A=sin2B,所以2A=2B或2A=π-2B,即A=B或A+B=eq\f(π,2).所以該三角形是等腰或直角三角形.答案:D4.在集合{a,b,c,d}上定義兩種運(yùn)算⊕和?如下:⊕abcdaabcdbbbbbccbcbddbbd?abcaaaababccaccdada那么,d?(a⊕c)等于()A.a(chǎn)B.bC.cD.d解析:由⊕運(yùn)算可知,a⊕c=c,所以d?(a⊕c)=d?c.由?運(yùn)算可知,d?c=a.故選A.答案:A5.下面的四個(gè)不等式:①a2+b2+c2≥ab+bc+ca;②a(1-a)≤eq\f(1,4);③eq\f(b,a)+eq\f(a,b)≥2;④(a2+b2)·(c2+d2)≥(ac+bd)2.其中恒成立的有()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)解析:因?yàn)閍2+b2+c2-(ab+bc+ca)=eq\f(1,2)[(a-b)2+(b-c)2+(c-a)2]≥0;a(1-a)-eq\f(1,4)=-a2+a-eq\f(1,4)=-eq\b\lc\(\rc\)(\a\vs4\al\co1(a-\f(1,2)))eq\s\up12(2)≤0;(a2+b2)·(c2+d2)=a2c2+a2d2+b2c2+b2d2≥a2c2+2abcd+b2d2=(ac+bd)2;而③中,當(dāng)a·b>0時(shí),不等式成立.所以①②④正確.答案:C二、填空題6.命題“函數(shù)f(x)=x-xlnx在區(qū)間(0,1)上是增函數(shù)”的證明過程“對(duì)函數(shù)f(x)=x-xlnx求導(dǎo),得f′(x)=-lnx,當(dāng)x∈(0,1)時(shí),f′(x)=-lnx>0,故函數(shù)f(x)在區(qū)間(0,1)上是增函數(shù)”應(yīng)用了________的證明方法.答案:綜合法7.將下面用分析法證明eq\f(a2+b2,2)≥ab的步驟補(bǔ)充完整:要證eq\f(a2+b2,2)≥ab,只需證a2+b2≥2ab,也就是證__________________,即證____________,由于____________顯然成立,因此原不等式成立.答案:a2+b2-2ab≥0(a-b)2≥0(a-b)2≥08.設(shè)a>0,b>0,c>0,若a+b+c=1,則eq\f(1,a)+eq\f(1,b)+eq\f(1,c)的最小值為________.解析:根據(jù)條件可知,欲求eq\f(1,a)+eq\f(1,b)+eq\f(1,c)的最小值.只需求(a+b+c)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)+\f(1,b)+\f(1,c)))的最小值,因?yàn)?a+b+c)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)+\f(1,b)+\f(1,c)))=3+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(b,a)+\f(a,b)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(c,a)+\f(a,c)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(c,b)+\f(b,c)))≥3+2+2+2=9(當(dāng)且僅當(dāng)a=b=c時(shí)取“=”).答案:9三、解答題9.(1)用綜合法證明:若a>0,b>0,求證:(a+b)·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)+\f(1,b)))≥4;(2)用分析法證明:eq\r(6)+eq\r(7)>2eq\r(2)+eq\r(5).證明:(1)因?yàn)閍>0,b>0,所以a+b≥2eq\r(ab),eq\f(1,a)+eq\f(1,b)≥2eq\r(\f(1,ab)),所以(a+b)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)+\f(1,b)))≥2eq\r(ab)·2eq\r(\f(1,ab))=4.當(dāng)且僅當(dāng)a=b,eq\f(1,a)=eq\f(1,b)時(shí),等號(hào)成立,所以(a+b)(eq\f(1,a)+eq\f(1,b))≥4.(2)要證eq\r(6)+eq\r(7)>2eq\r(2)+eq\r(5)成立,只需證(eq\r(6)+eq\r(7))2>(2eq\r(2)+eq\r(5))2,即證13+2eq\r(42)>13+4eq\r(10),只需證eq\r(42)>2eq\r(10),即證42>40,顯然成立.故原不等式成立.10.如圖所示,SA⊥平面ABC,AB⊥BC,過點(diǎn)A作SB的垂線,垂足為E,過點(diǎn)E作SC的垂線,垂足為F.求證:AF⊥SC.證明:要證AF⊥SC,而EF⊥SC,故只需證SC⊥平面AEF,只需證AE⊥SC,而AE⊥SB,故只需證AE⊥平面SBC,只需證AE⊥BC,而AB⊥BC,故只需證BC⊥平面SAB,只需證BC⊥SA.由SA⊥平面ABC可知,SA⊥BC,即上式成立,所以AF⊥SC成立.B級(jí)能力提升1.若a<b<c,則函數(shù)f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的兩個(gè)零點(diǎn)分別位于區(qū)間()A.(a,b)和(b,c)內(nèi) B.(-∞,a)和(a,b)內(nèi)C.(b,c)和(c,+∞)內(nèi) D.(-∞,a)和(c,+∞)內(nèi)解析:因?yàn)閍<b<c,所以f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,由零點(diǎn)存在性定理知,選項(xiàng)A正確.答案:A2.如果aeq\r(a)+beq\r(b)>aeq\r(b)+beq\r(a),則實(shí)數(shù)a,b應(yīng)滿足的條件是________.解析:要證aeq\r(a)+beq\r(b)>aeq\r(b)+beq\r(a),只需證aeq\r(a)-aeq\r(b)>beq\r(a)-b·eq\r(b),即證a(eq\r(a)-eq\r(b))>b(eq\r(a)-eq\r(b)),即證(a-b)·(eq\r(a)-eq\r(b))>0,即證(eq\r(a)+eq\r(b))(eq\r(a)-eq\r(b))2>0,要使該不等式成立,只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b3.△ABC的三個(gè)內(nèi)角A,B,C成等差數(shù)列,A,B,C的對(duì)邊分別為a,b,c.求證:eq\f(1,a+b)+eq\f(1,b+c)=eq\f(3,a+b+c).證明:要證eq
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能家居加盟品牌授權(quán)合同3篇
- 二零二五年度新能源儲(chǔ)能系統(tǒng)購(gòu)買合同3篇
- 二零二五年度林業(yè)人才培養(yǎng)合作造林協(xié)議3篇
- 2025年度老舊房屋漏水檢測(cè)與賠償專項(xiàng)協(xié)議3篇
- 2025年度股東退出與公司知識(shí)產(chǎn)權(quán)保護(hù)合同3篇
- 二零二五年度模特服裝租賃拍攝合同3篇
- 2025年度房地產(chǎn)公司合伙人項(xiàng)目合作協(xié)議3篇
- 二零二五年度循環(huán)水養(yǎng)殖養(yǎng)魚合作合同3篇
- 2025年度體育場(chǎng)館物業(yè)用房移交及賽事運(yùn)營(yíng)服務(wù)合同3篇
- 2025年度企業(yè)年會(huì)活動(dòng)宣傳片制作服務(wù)合同模板3篇
- 普通高校本科招生專業(yè)選考科目要求指引(通用版)
- 基坑工程監(jiān)控方案
- 中考生物試驗(yàn)操作評(píng)分參考標(biāo)準(zhǔn)
- 國(guó)家開放大學(xué)電大本科《國(guó)際私法》期末試題及答案(n試卷號(hào):1020)
- 四川省德陽(yáng)市中學(xué)2023年高一物理上學(xué)期期末試卷含解析
- 舉高消防車基礎(chǔ)知識(shí)
- 空氣、物表地面消毒登記記錄
- 急性腦梗死診治指南
- 檢察院分級(jí)保護(hù)項(xiàng)目技術(shù)方案
- 土木工程建筑中混凝土裂縫的施工處理技術(shù)畢業(yè)論文
- 水電站工程地質(zhì)勘察報(bào)告
評(píng)論
0/150
提交評(píng)論