版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省鐵嶺市名校2024屆中考試題猜想數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.桌面上有A、B兩球,若要將B球射向桌面任意一邊的黑點,則B球一次反彈后擊中A球的概率是()A. B. C. D.2.將一副三角板(∠A=30°)按如圖所示方式擺放,使得AB∥EF,則∠1等于()A.75° B.90° C.105° D.115°3.在某?!拔业闹袊鴫簟毖葜v比賽中,有9名學(xué)生參加決賽,他們決賽的最終成績各不相同.其中的一名學(xué)生想要知道自己能否進(jìn)入前5名,不僅要了解自己的成績,還要了解這9名學(xué)生成績的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)4.如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米5.在下列四個新能源汽車車標(biāo)的設(shè)計圖中,屬于中心對稱圖形的是()A. B. C. D.6.某小組在“用頻率估計概率”的試驗中,統(tǒng)計了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的試驗最有可能的是()A.在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”B.從一副撲克牌中任意抽取一張,這張牌是“紅色的”C.?dāng)S一枚質(zhì)地均勻的硬幣,落地時結(jié)果是“正面朝上”D.?dāng)S一個質(zhì)地均勻的正六面體骰子,落地時面朝上的點數(shù)是67.如圖,將半徑為2的圓形紙片折疊后,圓弧恰好經(jīng)過圓心,則折痕的長度為()A. B.2 C. D.8.?dāng)?shù)據(jù)”1,2,1,3,1”的眾數(shù)是()A.1B.1.5C.1.6D.39.如圖,有一塊含有30°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠2=44°,那么∠1的度數(shù)是()A.14°B.15°C.16°D.17°10.如圖,A,B是半徑為1的⊙O上兩點,且OA⊥OB.點P從A出發(fā),在⊙O上以每秒一個單位長度的速度勻速運動,回到點A運動結(jié)束.設(shè)運動時間為x,弦BP的長度為y,那么下面圖象中可能表示y與x的函數(shù)關(guān)系的是A.① B.④ C.②或④ D.①或③11.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值212.如果代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,一組平行橫格線,其相鄰橫格線間的距離都相等,已知點A、B、C、D、O都在橫格線上,且線段AD,BC交于點O,則AB:CD等于______.14.函數(shù)y=中自變量x的取值范圍是___________.15.有4根細(xì)木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.16.如圖,在平面直角坐標(biāo)系中,已知點A(1,1),以點O為旋轉(zhuǎn)中心,將點A逆時針旋轉(zhuǎn)到點B的位置,則的長為_____.17.關(guān)于的一元二次方程有兩個相等的實數(shù)根,則的值等于_____.18.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長度為_____三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C,∠F=30°.(1)求證:BE=CE(2)將△EFG繞點E按順時針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時停止轉(zhuǎn)動.若EF,EG分別與AB,BC相交于點M,N.(如圖2)①求證:△BEM≌△CEN;②若AB=2,求△BMN面積的最大值;③當(dāng)旋轉(zhuǎn)停止時,點B恰好在FG上(如圖3),求sin∠EBG的值.20.(6分)在平面直角坐標(biāo)系xOy中,若拋物線頂點A的橫坐標(biāo)是,且與y軸交于點,點P為拋物線上一點.求拋物線的表達(dá)式;若將拋物線向下平移4個單位,點P平移后的對應(yīng)點為如果,求點Q的坐標(biāo).21.(6分)綜合與實踐:概念理解:將△ABC繞點A按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為θ(0°≤θ≤90°),并使各邊長變?yōu)樵瓉淼膎倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],:.問題解決:(2)如圖,在△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B,C,C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值.拓廣探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,對△ABC作變換得到△AB′C′,則四邊形ABB′C′為正方形22.(8分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過點D作DE⊥AC,垂足為E.(1)證明:DE為⊙O的切線;(2)連接DC,若BC=4,求弧DC與弦DC所圍成的圖形的面積.23.(8分)如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.(1)試判斷∠AED與∠C的數(shù)量關(guān)系,并說明理由;(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為.24.(10分)先化簡再求值:÷(﹣1),其中x=.25.(10分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點P在x軸上,如果S△ABP=3,求點P的坐標(biāo).26.(12分)如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.求二次函數(shù)y=ax2+2x+c的表達(dá)式;連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標(biāo);當(dāng)點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標(biāo)和四邊形ACPB的最大面積.27.(12分)如圖,在△ABC中,∠C=90°.作∠BAC的平分線AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面積.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:由圖可知可以瞄準(zhǔn)的點有2個..∴B球一次反彈后擊中A球的概率是.故選B.2、C【解析】分析:依據(jù)AB∥EF,即可得∠BDE=∠E=45°,再根據(jù)∠A=30°,可得∠B=60°,利用三角形外角性質(zhì),即可得到∠1=∠BDE+∠B=105°.詳解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故選C.點睛:本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,內(nèi)錯角相等.3、D【解析】
根據(jù)中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù))的意義,9人成績的中位數(shù)是第5名的成績.參賽選手要想知道自己是否能進(jìn)入前5名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有9個人,且他們的分?jǐn)?shù)互不相同,第5的成績是中位數(shù),要判斷是否進(jìn)入前5名,故應(yīng)知道中位數(shù)的多少.故本題選:D.【點睛】本題考查了統(tǒng)計量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關(guān)鍵.4、C【解析】
在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點睛】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關(guān)鍵.5、D【解析】
根據(jù)中心對稱圖形的概念求解.【詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【點睛】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.6、D【解析】
根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.16附近波動,即其概率P≈0.16,計算四個選項的概率,約為0.16者即為正確答案.【詳解】根據(jù)圖中信息,某種結(jié)果出現(xiàn)的頻率約為0.16,在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”的概率為≈0.67>0.16,故A選項不符合題意,從一副撲克牌中任意抽取一張,這張牌是“紅色的”概率為≈0.48>0.16,故B選項不符合題意,擲一枚質(zhì)地均勻的硬幣,落地時結(jié)果是“正面朝上”的概率是=0.5>0.16,故C選項不符合題意,擲一個質(zhì)地均勻的正六面體骰子,落地時面朝上的點數(shù)是6的概率是≈0.16,故D選項符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.熟練掌握概率公式是解題關(guān)鍵.7、C【解析】
過O作OC⊥AB,交圓O于點D,連接OA,由垂徑定理得到C為AB的中點,再由折疊得到CD=OC,求出OC的長,在直角三角形AOC中,利用勾股定理求出AC的長,即可確定出AB的長.【詳解】過O作OC⊥AB,交圓O于點D,連接OA,由折疊得到CD=OC=OD=1cm,在Rt△AOC中,根據(jù)勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=cm,則AB=2AC=2cm.故選C.【點睛】此題考查了垂徑定理,勾股定理,以及翻折的性質(zhì),熟練掌握垂徑定理是解本題的關(guān)鍵.8、A【解析】
眾數(shù)指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)眾數(shù)的定義就可以求解.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故選:A.【點睛】本題為統(tǒng)計題,考查眾數(shù)的意義.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.9、C【解析】
依據(jù)∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根據(jù)BE∥CD,即可得出∠1=∠EBC=16°.【詳解】如圖,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故選:C.【點睛】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,內(nèi)錯角相等.10、D【解析】
分兩種情形討論當(dāng)點P順時針旋轉(zhuǎn)時,圖象是③,當(dāng)點P逆時針旋轉(zhuǎn)時,圖象是①,由此即可解決問題.【詳解】解:當(dāng)點P順時針旋轉(zhuǎn)時,圖象是③,當(dāng)點P逆時針旋轉(zhuǎn)時,圖象是①.故選D.11、D【解析】設(shè)拋物線與x軸的兩交點間的橫坐標(biāo)分別為:x1,x2,
由韋達(dá)定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.12、C【解析】
根據(jù)二次根式有意義和分式有意義的條件列出不等式,解不等式即可.【詳解】由題意得,x+3≥0,x≠0,解得x≥?3且x≠0,故選C.【點睛】本題考查分式有意義條件,二次根式有意義的條件,熟練掌握相關(guān)知識是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2:1.【解析】
過點O作OE⊥AB于點E,延長EO交CD于點F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根據(jù)相似三角形對應(yīng)高的比等于相似比可得,由此即可求得答案.【詳解】如圖,過點O作OE⊥AB于點E,延長EO交CD于點F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,練習(xí)本中的橫格線都平行,且相鄰兩條橫格線間的距離都相等,∴=,故答案為:2:1.【點睛】本題考查了相似三角形的的判定與性質(zhì),熟練掌握相似三角形對應(yīng)高的比等于相似比是解本題的關(guān)鍵.14、x≥﹣且x≠1【解析】
試題解析:根據(jù)題意得:解得:x≥﹣且x≠1.故答案為:x≥﹣且x≠1.15、【解析】
根據(jù)題意,使用列舉法可得從有4根細(xì)木棒中任取3根的總共情況數(shù)目以及能搭成一個三角形的情況數(shù)目,根據(jù)概率的計算方法,計算可得答案.【詳解】根據(jù)題意,從有4根細(xì)木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.16、.【解析】
由點A(1,1),可得OA的長,點A在第一象限的角平分線上,可得∠AOB=45°,,再根據(jù)弧長公式計算即可.【詳解】∵A(1,1),∴OA=,點A在第一象限的角平分線上,∵以點O為旋轉(zhuǎn)中心,將點A逆時針旋轉(zhuǎn)到點B的位置,∴∠AOB=45°,∴的長為=,故答案為:.【點睛】本題考查坐標(biāo)與圖形變化——旋轉(zhuǎn),弧長公式,熟練掌握旋轉(zhuǎn)的性質(zhì)以及弧長公式是解題的關(guān)鍵.本題中求出OA=以及∠AOB=45°也是解題的關(guān)鍵.17、【解析】分析:先根據(jù)根的判別式得到a-1=,把原式變形為,然后代入即可得出結(jié)果.詳解:由題意得:△=,∴,∴,即a(a-1)=1,∴a-1=,故答案為-3.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根;當(dāng)△=0,方程有兩個,相等的實數(shù)根,也考查了一元二次方程的定義.18、【解析】
分析題意,如圖所示,連接BF,由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進(jìn)而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進(jìn)而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為【點睛】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì)三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(1)①詳見解析;②1;③.【解析】
(1)只要證明△BAE≌△CDE即可;(1)①利用(1)可知△EBC是等腰直角三角形,根據(jù)ASA即可證明;②構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題;③如圖3中,作EH⊥BG于H.設(shè)NG=m,則BG=1m,BN=EN=m,EB=m.利用面積法求出EH,根據(jù)三角函數(shù)的定義即可解決問題.【詳解】(1)證明:如圖1中,∵四邊形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中點,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(1)①解:如圖1中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,設(shè)BM=CN=x,則BN=4-x,∴S△BMN=?x(4-x)=-(x-1)1+1,∵-<0,∴x=1時,△BMN的面積最大,最大值為1.③解:如圖3中,作EH⊥BG于H.設(shè)NG=m,則BG=1m,BN=EN=m,EB=m.∴EG=m+m=(1+)m,∵S△BEG=?EG?BN=?BG?EH,∴EH==m,在Rt△EBH中,sin∠EBH=.【點睛】本題考查四邊形綜合題、矩形的性質(zhì)、等腰直角三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、旋轉(zhuǎn)變換、銳角三角函數(shù)等知識,解題的關(guān)鍵是準(zhǔn)確尋找全等三角形解決問題,學(xué)會添加常用輔助線,學(xué)會利用參數(shù)解決問題,20、為;點Q的坐標(biāo)為或.【解析】
依據(jù)拋物線的對稱軸方程可求得b的值,然后將點B的坐標(biāo)代入線可求得c的值,即可求得拋物線的表達(dá)式;由平移后拋物線的頂點在x軸上可求得平移的方向和距離,故此,然后由點,軸可得到點Q和P關(guān)于x對稱,可求得點Q的縱坐標(biāo),將點Q的縱坐標(biāo)代入平移后的解析式可求得對應(yīng)的x的值,則可得到點Q的坐標(biāo).【詳解】拋物線頂點A的橫坐標(biāo)是,,即,解得..將代入得:,拋物線的解析式為.拋物線向下平移了4個單位.平移后拋物線的解析式為,.,點O在PQ的垂直平分線上.又軸,點Q與點P關(guān)于x軸對稱.點Q的縱坐標(biāo)為.將代入得:,解得:或.點Q的坐標(biāo)為或.【點睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了待定系數(shù)法求二次函數(shù)的解析式、二次函數(shù)的平移規(guī)律、線段垂直平分線的性質(zhì),發(fā)現(xiàn)點Q與點P關(guān)于x軸對稱,從而得到點Q的縱坐標(biāo)是解題的關(guān)鍵.21、(1);(2);(3).【解析】
(1)根據(jù)定義可知△ABC∽△AB′C′,再根據(jù)相似三角形的面積之比等于相似比的平方即可;(2)根據(jù)四邊形是矩形,得出,進(jìn)而得出,根據(jù)30°直角三角形的性質(zhì)即可得出答案;(3)根據(jù)四邊形ABB′C′為正方形,從而得出,再根據(jù)等腰直角三角形的性質(zhì)即可得出答案.【詳解】解:(1)∵△AB′C′的邊長變?yōu)榱恕鰽BC的n倍,∴△ABC∽△AB′C′,∴,故答案為:.(2)四邊形是矩形,∴..在中,,...(3)若四邊形ABB′C′為正方形,則,,∴,∴,又∵在△ABC中,AB=,∴,∴故答案為:.【點睛】本題考查了幾何變換中的新定義問題,以及相似三角形的判定和性質(zhì),理解[θ,n]的意義是解題的關(guān)鍵.22、(1)詳見解析;(2).【解析】
(1)連接OD,由平行線的判定定理可得OD∥AC,利用平行線的性質(zhì)得∠ODE=∠DEA=90°,可得DE為⊙O的切線;
(2)連接CD,求弧DC與弦DC所圍成的圖形的面積利用扇形DOC面積-三角形DOC的面積計算即可.【詳解】解:(1)證明:連接OD,∵OD=OB,∴∠ODB=∠B,∵AC=BC,∴∠A=∠B,∴∠ODB=∠A,∴OD∥AC,∴∠ODE=∠DEA=90°,∴DE為⊙O的切線;(2)連接CD,∵∠A=30°,AC=BC,∴∠BCA=120°,∵BC為直徑,∴∠ADC=90°,∴CD⊥AB,∴∠BCD=60°,∵OD=OC,∴∠DOC=60°,∴△DOC是等邊三角形,∵BC=4,∴OC=DC=2,∴S△DOC=DC×=,∴弧DC與弦DC所圍成的圖形的面積=﹣=﹣.【點睛】本題考查的知識點是等腰三角形的性質(zhì)、切線的判定與性質(zhì)以及扇形面積的計算,解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì)、切線的判定與性質(zhì)以及扇形面積的計算.23、(1)∠AED=∠C,理由見解析;(2)【解析】
(1)根據(jù)切線的性質(zhì)和圓周角定理解答即可;(2)根據(jù)勾股定理和三角函數(shù)進(jìn)行解答即可.【詳解】(1)∠AED=∠C,證明如下:連接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切線,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)連接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圓AB的中點,∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=2,∠ADB=90°,∴cos∠EAB=,解得:AE=.故答案為【點睛】此題考查了切線的性質(zhì)、直角三角形的性質(zhì)以及圓周角定理.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法.24、【解析】分析:根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可解答本題.詳解:原式====當(dāng)時,原式==.點睛:本題考查了分式的化簡求值,解答本題的關(guān)鍵是明確分式化簡求值的方法.25、(1)y=﹣2x+1;(2)點P的坐標(biāo)為(﹣,0)或(,0).【解析】
(1)把A的坐標(biāo)代入可求出m,即可求出反比例函數(shù)解析式,把B點的坐標(biāo)代入反比例函數(shù)解析式,即可求出n,把A,B的坐標(biāo)代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)利用一次函數(shù)圖象上點的坐標(biāo)特征可求出點C的坐標(biāo),設(shè)點P的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合S△ABP=3,即可得出,解之即可得出結(jié)論.【詳解】(1)∵雙曲線y=(m≠0)經(jīng)過點A(﹣,2),∴m=﹣1.∴雙曲線的表達(dá)式為y=﹣.∵點B(n,﹣1)在雙曲線y=﹣上,∴點B的坐標(biāo)為(1,﹣1).∵直線y=kx+b經(jīng)過點A(﹣,2),B(1,﹣1),∴,解得∴直線的表達(dá)式為y=﹣2x+1;(2)當(dāng)y=﹣2x+1=0時,x=,∴點C(,0).設(shè)點P的坐標(biāo)為(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴點P的坐標(biāo)為(﹣,0)或(,0).【點睛】本題考查了反比例函數(shù)與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源汽車充電站場地租賃與運營管理合同12篇
- 2025年度圖書銷售合同范本二零二五年度4篇
- 二零二五年度高端餐廳特色菜品定制供應(yīng)合同3篇
- 專業(yè)設(shè)備運輸協(xié)議模板(2024版)
- 2024蓄水池建造與維護(hù)一體化服務(wù)合同3篇
- 專業(yè)用琴租賃協(xié)議(2024年度)版B版
- 2025年度茶葉倉儲物流配送服務(wù)協(xié)議4篇
- 2025年度智慧城市建設(shè)物聯(lián)網(wǎng)設(shè)備采購與安裝服務(wù)協(xié)議3篇
- 2024限定版戶外欄桿施工協(xié)議版B版
- 個性化汽車租賃協(xié)議模板2024版版
- 安徽省合肥市包河區(qū)2023-2024學(xué)年九年級上學(xué)期期末化學(xué)試題
- 《酸堿罐區(qū)設(shè)計規(guī)范》編制說明
- PMC主管年終總結(jié)報告
- 售樓部保安管理培訓(xùn)
- 倉儲培訓(xùn)課件模板
- 2025屆高考地理一輪復(fù)習(xí)第七講水循環(huán)與洋流自主練含解析
- GB/T 44914-2024和田玉分級
- 2024年度企業(yè)入駐跨境電商孵化基地合作協(xié)議3篇
- 《形勢與政策》課程標(biāo)準(zhǔn)
- 2023年海南省公務(wù)員錄用考試《行測》真題卷及答案解析
- 橋梁監(jiān)測監(jiān)控實施方案
評論
0/150
提交評論