版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古通遼市科爾沁區(qū)第七中學2023-2024學年中考四模數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.將拋物線y=x2先向左平移2個單位,再向下平移3個單位后所得拋物線的解析式為()A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3C.y=(x+2)2+3D.y=(x+2)2﹣32.義安區(qū)某中學九年級人數(shù)相等的甲、乙兩班學生參加同一次數(shù)學測試,兩班平均分和方差分別為甲=89分,乙=89分,S甲2=195,S乙2=1.那么成績較為整齊的是()A.甲班 B.乙班 C.兩班一樣 D.無法確定3.如圖,AB是⊙O的直徑,AB=8,弦CD垂直平分OB,E是弧AD上的動點,AF⊥CE于點F,點E在弧AD上從A運動到D的過程中,線段CF掃過的面積為()A.4π+3 B.4π+ C.π+ D.π+34.加工爆米花時,爆開且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時間t(單位:分鐘)滿足的函數(shù)關系p=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三次實驗的數(shù)據(jù).根據(jù)上述函數(shù)模型和實驗數(shù)據(jù),可得到最佳加工時間為()A.4.25分鐘 B.4.00分鐘 C.3.75分鐘 D.3.50分鐘5.小明和小張兩人練習電腦打字,小明每分鐘比小張少打6個字,小明打120個字所用的時間和小張打180個字所用的時間相等.設小明打字速度為x個/分鐘,則列方程正確的是()A. B. C. D.6.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數(shù)是()A.20° B.35° C.40° D.70°7.在快速計算法中,法國的“小九九”從“一一得一”到“五五二十五”和我國的“小九九”算法是完全一樣的,而后面“六到九”的運算就改用手勢了.如計算8×9時,左手伸出3根手指,右手伸出4根手指,兩只手伸出手指數(shù)的和為7,未伸出手指數(shù)的積為2,則8×9=10×7+2=1.那么在計算6×7時,左、右手伸出的手指數(shù)應該分別為()A.1,2 B.1,3C.4,2 D.4,38.a(chǎn)、b是實數(shù),點A(2,a)、B(3,b)在反比例函數(shù)y=﹣的圖象上,則()A.a(chǎn)<b<0 B.b<a<0 C.a(chǎn)<0<b D.b<0<a9.已知拋物線y=x2+bx+c的對稱軸為x=2,若關于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍內有兩個相等的實數(shù)根,則c的取值范圍是(
)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=410.(2011?雅安)點P關于x軸對稱點為P1(3,4),則點P的坐標為()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)二、填空題(本大題共6個小題,每小題3分,共18分)11.擲一枚材質均勻的骰子,擲得的點數(shù)為合數(shù)的概率是__________.12.已知二次函數(shù)y=ax2+bx(a≠0)的最小值是﹣3,若關于x的一元二次方程ax2+bx+c=0有實數(shù)根,則c的最大值是_____.13.已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45o.則圖中陰影部分的面積是____________.14.如圖,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一點D,使AD=4,將線段AD繞點A按順時針方向旋轉,點D的對應點是點P,連接BP,取BP的中點F,連接CF,當點P旋轉至CA的延長線上時,CF的長是_____,在旋轉過程中,CF的最大長度是_____.15.若關于x的方程x2-mx+m=0有兩個相等實數(shù)根,則代數(shù)式2m2-8m+3的值為__________.16.如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對角線AC為邊,按逆時針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1,以對角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,…,按此規(guī)律繼續(xù)下去,則矩形ABnCnCn-1的面積為________________.三、解答題(共8題,共72分)17.(8分)如圖,已知D是AC上一點,AB=DA,DE∥AB,∠B=∠DAE.求證:BC=AE.18.(8分)已知:如圖,□ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.19.(8分)為了解朝陽社區(qū)歲居民最喜歡的支付方式,某興趣小組對社區(qū)內該年齡段的部分居民展開了隨機問卷調查(每人只能選擇其中一項),并將調查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:求參與問卷調查的總人數(shù).補全條形統(tǒng)計圖.該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).20.(8分)某商場購進一批30瓦的LED燈泡和普通白熾燈泡進行銷售,其進價與標價如下表:LED燈泡普通白熾燈泡進價(元)4525標價(元)6030(1)該商場購進了LED燈泡與普通白熾燈泡共300個,LED燈泡按標價進行銷售,而普通白熾燈泡打九折銷售,當銷售完這批燈泡后可獲利3200元,求該商場購進LED燈泡與普通白熾燈泡的數(shù)量分別為多少個?(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進這兩種燈泡120個,在不打折的情況下,請問如何進貨,銷售完這批燈泡時獲利最多且不超過進貨價的30%,并求出此時這批燈泡的總利潤為多少元?21.(8分)如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當?shù)谝淮闻c外切時,求平移的時間.22.(10分)有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節(jié)省費用?23.(12分)如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點C旋轉.當點D恰好落在BC邊上時,填空:線段DE與AC的位置關系是;②設△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數(shù)量關系是.猜想論證當△DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1與S1的數(shù)量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應的BF的長24.如圖1,已知直線y=kx與拋物線y=交于點A(3,6).(1)求直線y=kx的解析式和線段OA的長度;(2)點P為拋物線第一象限內的動點,過點P作直線PM,交x軸于點M(點M、O不重合),交直線OA于點Q,再過點Q作直線PM的垂線,交y軸于點N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個定值;如果不是,說明理由;(3)如圖2,若點B為拋物線上對稱軸右側的點,點E在線段OA上(與點O、A不重合),點D(m,0)是x軸正半軸上的動點,且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時,符合條件的E點的個數(shù)分別是1個、2個?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
先得到拋物線y=x2的頂點坐標(0,0),再根據(jù)點平移的規(guī)律得到點(0,0)平移后的對應點的坐標為(-2,-1),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線y=x2的頂點坐標為(0,0),把點(0,0)先向左平移2個單位,再向下平移1個單位得到對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.故選:D.【點睛】本題考查了二次函數(shù)與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.2、B【解析】
根據(jù)方差的意義,方差反映了一組數(shù)據(jù)的波動大小,故可由兩人的方差得到結論.【詳解】∵S甲2>S乙2,∴成績較為穩(wěn)定的是乙班。故選:B.【點睛】本題考查了方差,解題的關鍵是掌握方差的概念進行解答.3、A【解析】
連AC,OC,BC.線段CF掃過的面積=扇形MAH的面積+△MCH的面積,從而證明即可解決問題.【詳解】如下圖,連AC,OC,BC,設CD交AB于H,∵CD垂直平分線段OB,∴CO=CB,∵OC=OB,∴OC=OB=BC,∴,∵AB是直徑,∴,∴,∵,∴點F在以AC為直徑的⊙M上運動,當E從A運動到D時,點F從A運動到H,連接MH,∵MA=MH,∴∴,∵,∴CF掃過的面積為,故選:A.【點睛】本題主要考查了陰影部分面積的求法,熟練掌握扇形的面積公式及三角形的面積求法是解決本題的關鍵.4、C【解析】
根據(jù)題目數(shù)據(jù)求出函數(shù)解析式,根據(jù)二次函數(shù)的性質可得.【詳解】根據(jù)題意,將(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=?0.2,b=1.5,c=?2,即p=?0.2t2+1.5t?2,當t=?=3.75時,p取得最大值,故選C.【點睛】本題考查了二次函數(shù)的應用,熟練掌握性質是解題的關鍵.5、C【解析】
解:因為設小明打字速度為x個/分鐘,所以小張打字速度為(x+6)個/分鐘,根據(jù)關系:小明打120個字所用的時間和小張打180個字所用的時間相等,可列方程得,故選C.【點睛】本題考查列分式方程解應用題,找準題目中的等量關系,難度不大.6、B【解析】
先根據(jù)等腰三角形的性質以及三角形內角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.【點睛】本題考查了等腰三角形的兩個底角相等的性質,等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質,三角形內角和定理以及角平分線定義,求出∠ACB=70°是解題的關鍵.7、A【解析】試題分析:通過猜想得出數(shù)據(jù),再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和為3×10=30,30+4×3=42,故選A.點評:此題是定義新運算題型.通過閱讀規(guī)則,得出一般結論.解題關鍵是對號入座不要找錯對應關系.8、A【解析】解:∵,∴反比例函數(shù)的圖象位于第二、四象限,在每個象限內,y隨x的增大而增大,∵點A(2,a)、B(3,b)在反比例函數(shù)的圖象上,∴a<b<0,故選A.9、D【解析】解:由對稱軸x=2可知:b=﹣4,∴拋物線y=x2﹣4x+c,令x=﹣1時,y=c+5,x=3時,y=c﹣3,關于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍有實數(shù)根,當△=0時,即c=4,此時x=2,滿足題意.當△>0時,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,當c=﹣5時,此時方程為:﹣x2+4x+5=0,解得:x=﹣1或x=5不滿足題意,當c=3時,此時方程為:﹣x2+4x﹣3=0,解得:x=1或x=3此時滿足題意,故﹣5<c≤3或c=4,故選D.點睛:本題主要考查二次函數(shù)與一元二次方程的關系.理解二次函數(shù)與一元二次方程之間的關系是解題的關鍵.10、A【解析】∵關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù),∴點P的坐標為(3,﹣4).故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:擲一枚質地均勻的骰子,擲得的點數(shù)可能是1、2、3、4、5、6中的任意一個數(shù),共有六種可能,其中4、6是合數(shù),所以概率為=.故答案為.點睛:本題主要考查概率的求法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.12、3【解析】
由一元二次方程ax2+bx+c=0有實數(shù)根,可得y=ax2+bx(a≠0)和y=-c有交點,由此即可解答.【詳解】∵一元二次方程ax2+bx+c=0有實數(shù)根,∴拋物線y=ax2+bx(a≠0)和直線y=-c有交點,∴-c≥-3,即c≤3,∴c的最大值為3.故答案為:3.【點睛】本題考查了一元二次方程與二次函數(shù),根據(jù)一元二次方程有實數(shù)根得到拋物線y=ax2+bx(a≠0)和直線y=-c有交點是解決問題的關鍵.13、(-)cm2【解析】S陰影=S扇形-S△OBD=52-×5×5=.故答案是:.14、,+2.【解析】
當點P旋轉至CA的延長線上時,CP=20,BC=2,利用勾股定理求出BP,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得CF的長;取AB的中點M,連接MF和CM,根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得CM的長,利用三角形中位線定理,可得FM的長,再根據(jù)當且僅當M、F、C三點共線且M在線段CF上時CF最大,即可得到結論.【詳解】當點P旋轉至CA的延長線上時,如圖2.∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,∴BP=,∵BP的中點是F,∴CF=BP=.取AB的中點M,連接MF和CM,如圖2.∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,∴AB=2.∵M為AB中點,∴CM=AB=,∵將線段AD繞點A按順時針方向旋轉,點D的對應點是點P,∴AP=AD=4,∵M為AB中點,F(xiàn)為BP中點,∴FM=AP=2.當且僅當M、F、C三點共線且M在線段CF上時CF最大,此時CF=CM+FM=+2.故答案為,+2.【點睛】考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了直角三角形斜邊上的中線等于斜邊的一半以及勾股定理.根據(jù)題意正確畫出對應圖形是解題的關鍵.15、1.【解析】
根據(jù)方程的系數(shù)結合根的判別式即可得出△=m2﹣4m=0,將其代入2m2﹣8m+1中即可得出結論.【詳解】∵關于x的方程x2﹣mx+m=0有兩個相等實數(shù)根,∴△=(﹣m)2﹣4m=m2﹣4m=0,∴2m2﹣8m+1=2(m2﹣4m)+1=1.故答案為1.【點睛】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數(shù)根”是解題的關鍵.16、或【解析】試題分析:AC===,因為矩形都相似,且每相鄰兩個矩形的相似比=,∴=2×1=2,=,===,...,==...===.故答案為.考點:1.相似多邊形的性質;2.勾股定理;3.規(guī)律型;4.矩形的性質;5.綜合題.三、解答題(共8題,共72分)17、見解析【解析】
證明:∵DE∥AB,∴∠CAB=∠ADE.在△ABC和△DAE中,∵,∴△ABC≌△DAE(ASA).∴BC=AE.【點睛】根據(jù)兩直線平行,內錯角相等求出∠CAB=∠ADE,然后利用“角邊角”證明△ABC和△DAE全等,再根據(jù)全等三角形對應邊相等證明即可.18、(1)證明:∵ABCD是平行四邊形∴AB=CDAB∥CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90∴△ABE≌△CDF∴BE=DF【解析】證明:在□ABCD中∵AB∥CD∴∠ABE=∠CDF…………4分∵AE⊥BDCF⊥BD∴∠AEB=∠CFD=900……………………5分∵AB=CD∴△ABE≌△CDF…………6分∴BE=DF19、(1)參與問卷調查的總人數(shù)為500人;(2)補全條形統(tǒng)計圖見解析;(3)這些人中最喜歡微信支付方式的人數(shù)約為2800人.【解析】
(1)根據(jù)喜歡支付寶支付的人數(shù)÷其所占各種支付方式的比例=參與問卷調查的總人數(shù),即可求出結論;
(2)根據(jù)喜歡現(xiàn)金支付的人數(shù)(41~60歲)=參與問卷調查的總人數(shù)×現(xiàn)金支付所占各種支付方式的比例-15,即可求出喜歡現(xiàn)金支付的人數(shù)(41~60歲),再將條形統(tǒng)計圖補充完整即可得出結論;
(3)根據(jù)喜歡微信支付方式的人數(shù)=社區(qū)居民人數(shù)×微信支付所占各種支付方式的比例,即可求出結論.【詳解】(1)(人.答:參與問卷調查的總人數(shù)為500人.(2)(人.補全條形統(tǒng)計圖,如圖所示.(3)(人.答:這些人中最喜歡微信支付方式的人數(shù)約為2800人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用樣本估計總體,解題的關鍵是:(1)觀察統(tǒng)計圖找出數(shù)據(jù),再列式計算;(2)通過計算求出喜歡現(xiàn)金支付的人數(shù)(41~60歲);(3)根據(jù)樣本的比例×總人數(shù),估算出喜歡微信支付方式的人數(shù).20、(1)LED燈泡與普通白熾燈泡的數(shù)量分別為200個和100個;(2)1350元.【解析】
1)設該商場購進LED燈泡x個,普通白熾燈泡的數(shù)量為y個,利用該商場購進了LED燈泡與普通白熾燈泡共300個和銷售完這批燈泡后可以獲利3200元列方程組,然后解方程組即可;
(2)設該商場購進LED燈泡a個,則購進普通白熾燈泡(120-a)個,這批燈泡的總利潤為W元,利用利潤的意義得到W=(60-45)a+(30-25)(120-a)=10a+1,再根據(jù)銷售完這批燈泡時獲利最多且不超過進貨價的30%可確定a的范圍,然后根據(jù)一次函數(shù)的性質解決問題.【詳解】(1)設該商場購進LED燈泡x個,普通白熾燈泡的數(shù)量為y個.根據(jù)題意,得解得答:該商場購進LED燈泡與普通白熾燈泡的數(shù)量分別為200個和100個.(2)設該商場再次購進LED燈泡a個,這批燈泡的總利潤為W元.則購進普通白熾燈泡(120﹣a)個.根據(jù)題意得W=(60﹣45)a+(30﹣25)(120﹣a)=10a+1.∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,∵k=10>0,∴W隨a的增大而增大,∴a=75時,W最大,最大值為1350,此時購進普通白熾燈泡(120﹣75)=45個.答:該商場再次購進LED燈泡75個,購進普通白熾燈泡45個,這批燈泡的總利潤為1350元.【點睛】本題考查了二元一次方程組和一次函數(shù)的應用,根據(jù)實際問題找到等量關系列方程組和建立一次函數(shù)模型,利用一次函數(shù)的性質和自變量的取值范圍解決最值問題是解題的關鍵.21、(1)直線的解析式為:.(2)平移的時間為5秒.【解析】
(1)求直線的解析式,可以先求出A、C兩點的坐標,就可以根據(jù)待定系數(shù)法求出函數(shù)的解析式.(2)設⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1.在直角△O1O3D1中,根據(jù)勾股定理,就可以求出O1D1,進而求出D1D的長,得到平移的時間.【詳解】(1)由題意得,∴點坐標為.∵在中,,,∴點的坐標為.設直線的解析式為,由過、兩點,得,解得,∴直線的解析式為:.(2)如圖,設平移秒后到處與第一次外切于點,與軸相切于點,連接,.則,∵軸,∴,在中,.∵,∴,∴(秒),∴平移的時間為5秒.【點睛】本題綜合了待定系數(shù)法求函數(shù)解析式,以及圓的位置關系,其中兩圓相切時的輔助線的作法是經(jīng)常用到的.22、(1)1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸;(2)貨運公司應安排大貨車8輛時,小貨車2輛時最節(jié)省費用.【解析】
(1)設1輛大貨車和1輛小貨車一次可以分別運貨噸和噸,根據(jù)“3輛大貨車與4輛小貨車一次可以運貨18噸、2輛大貨車與6輛小貨車一次可以運貨17噸”列方程組求解可得;(2)因運輸33噸且用10輛車一次運完,故10輛車所運貨不低于10噸,所以列不等式,大貨車運費高于小貨車,故用大貨車少費用就小進行安排即可.【詳解】(1)解:設1輛大貨車一次可以運貨x噸,1輛小貨車一次可以運貨y噸,依題可得:
,
解得:.
答:1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸.
(2)解:設大貨車有m輛,則小貨車10-m輛,依題可得:
4m+(10-m)≥33
m≥0
10-m≥0
解得:≤m≤10,
∴m=8,9,10;
∴當大貨車8輛時,則小貨車2輛;
當大貨車9輛時,則小貨車1輛;
當大貨車10輛時,則小貨車0輛;
設運費為W=130m+100(10-m)=30m+1000,
∵k=30〉0,
∴W隨x的增大而增大,
∴當m=8時,運費最少,
∴W=130×8+100×2=1240(元),
答:貨運公司應安排大貨車8輛時,小貨車2輛時最節(jié)省費用.【點睛】考查了二元一次方程組和一元一次不等式的應用,體現(xiàn)了數(shù)學建模思想,考查了學生用方程解實際問題的能力,解題的關鍵是根據(jù)題意建立方程組,并利用不等式求解大貨車的數(shù)量,解題時注意題意中一次運完的含義,此類試題常用的方法為建立方程,利用不等式或者一次函數(shù)性質確定方案.23、解:(1)①DE∥AC.②.(1)仍然成立,證明見解析;(3)3或2.【解析】
(1)①由旋轉可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過D作DN⊥AC交AC于點N,過E作EM⊥AC交AC延長線于M,過C作CF⊥AB交AB于點F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,
∵△DEC是由△ABC繞點C旋轉得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
即S1=S1;(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此時S△DCF1=S△BDE;
過點D作DF1⊥BD,
∵∠ABC=20°,F(xiàn)1D∥BE,
∴∠F1F1D=∠ABC=20°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
∴∠F1DF1=∠ABC=20°,
∴△DF1F1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 類風濕關節(jié)炎慢病管理
- 新生兒糖尿病的護理課件
- 高三化學一輪復習 第五章 《化工生產(chǎn)中的重要非金屬元素》 專題講解 氣體的制備、凈化和收集 課件
- 巧用繩課件教學課件
- 2-1-3 碳酸鈉與碳酸氫鈉 課件 高一上學期化學人教版(2019)必修第一冊
- 吉林省2024七年級數(shù)學上冊第1章有理數(shù)階段綜合訓練范圍1.6~1.8課件新版華東師大版
- 低壓裝表接電安全
- 報任安書公開課教案
- 家居建材客服合同范本
- 幼兒園衛(wèi)生清潔工勞動合同
- 中學化學實驗室管理制度
- 2023年05月北京科技大學人才招聘(第二批)筆試歷年高頻考點試題含答案附詳解
- 信息技術應用于高三化學復習課教學的研究的開題報告
- 國開《人文英語1》單元自測unit1-8習題答案整理合集
- 2023上海高三高考英語模擬試卷20套(含答案)
- 羅大佑的歌詞集
- 世界經(jīng)濟形勢與政策論文2000字三篇
- 康復護理學綜述
- QC成果提高鋼結構屋面防水施工合格率匯報圖文結合
- 植物種群及其基本特征
- 藥物性肝損傷指南
評論
0/150
提交評論