版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆安徽省合肥市科大附中九上數(shù)學期末預測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.若關(guān)于x的一元二次方程kx2-2kx+4=0有兩個相等的實數(shù)根,則kA.0或4 B.4或8 C.0 D.42.某市為解決部分市民冬季集中取暖問題需鋪設(shè)一條長3000米的管道,為盡量減少施工對交通造成的影響,實施施工時“…”,設(shè)實際每天鋪設(shè)管道x米,則可得方程=15,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補為()A.每天比原計劃多鋪設(shè)10米,結(jié)果延期15天才完成B.每天比原計劃少鋪設(shè)10米,結(jié)果延期15天才完成C.每天比原計劃多鋪設(shè)10米,結(jié)果提前15天才完成D.每天比原計劃少鋪設(shè)10米,結(jié)果提前15天才完成3.如圖,在等腰Rt△ABC中,∠BAC=90°,BC=2,點P是△ABC內(nèi)部的一個動點,且滿足∠PBC=∠PCA,則線段AP長的最小值為()A.0.5 B.﹣1 C.2﹣ D.4.平面直角坐標系中,點P,Q在同一反比例函數(shù)圖象上的是()A.P(-2,-3),Q(3,-2) B.P(2,-3),Q(3,2)C.P(2,3),Q(-4,-) D.P(-2,3),Q(-3,-2)5.如圖,點在以為直徑的半圓上,點為圓心,,則的度數(shù)為()A. B. C. D.6.下列圖形中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.7.在Rt△ABC中,∠C=90°,sinA=,則∠A的度數(shù)是()A.30° B.45° C.60° D.90°8.如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的兩根分別為-3和1;④a-2b+c≥0,其中正確的命題是()A.①②③ B.①④ C.①③ D.①③④9.如圖,直線與雙曲線交于、兩點,則當時,x的取值范圍是A.或B.或C.或D.10.小新拋一枚質(zhì)地均勻的硬幣,連續(xù)拋三次,硬幣落地均正面朝上,如果他第四次拋硬幣,那么硬幣正面朝上的概率為()A. B. C.1 D.11.下列事件中,屬于隨機事件的是().A.13名同學中至少有兩名同學的生日在同一個月B.在只有白球的盒子里摸到黑球C.經(jīng)過交通信號燈的路口遇到紅燈D.用長為,,的三條線段能圍成一個邊長分別為,,的三角形12.如圖,DC是⊙O的直徑,弦AB⊥CD于點F,連接BC,BD,則錯誤結(jié)論為()A.OF=CF B.AF=BF C. D.∠DBC=90°二、填空題(每題4分,共24分)13.如圖,一艘輪船從位于燈塔的北偏東60°方向,距離燈塔60海里的小島出發(fā),沿正南方向航行一段時間后,到達位于燈塔的南偏東45°方向上的處,這時輪船與小島的距離是__________海里.14.若關(guān)于x的方程為一元二次方程,則m=__________.15.△ABC中,∠A、∠B都是銳角,若sinA=,cosB=,則∠C=_____.16.設(shè)a,b是方程x2+x﹣2018=0的兩個實數(shù)根,則(a﹣1)(b﹣1)的值為_____.17.如圖,在⊙O中,弦AC=2,點B是圓上一點,且∠ABC=45°,則⊙O的半徑R=.18.如圖,已知l1∥l2∥l3,直線l4、l5被這組平行線所截,且直線l4、l5相交于點E,已知AE=EF=1,F(xiàn)B=3,則=_____.三、解答題(共78分)19.(8分)閱讀以下材料,并按要求完成相應(yīng)的任務(wù).已知平面上兩點,則所有符合且的點會組成一個圓.這個結(jié)論最先由古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn),稱阿氏圓.阿氏圓基本解法:構(gòu)造三角形相似.(問題)如圖1,在平面直角坐標中,在軸,軸上分別有點,點是平面內(nèi)一動點,且,設(shè),求的最小值.阿氏圓的關(guān)鍵解題步驟:第一步:如圖1,在上取點,使得;第二步:證明;第三步:連接,此時即為所求的最小值.下面是該題的解答過程(部分):解:在上取點,使得,又.任務(wù):將以上解答過程補充完整.如圖2,在中,為內(nèi)一動點,滿足,利用中的結(jié)論,請直接寫出的最小值.20.(8分)如圖是一種簡易臺燈的結(jié)構(gòu)圖,燈座為△ABC,A、C、D在同一直線上,量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,燈桿CD長為40cm,燈管DE長為15cm.求臺燈的高(即臺燈最高點E到底盤AB的距離).(結(jié)果取整,參考數(shù)據(jù)sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)21.(8分)如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D,E,AD與BE相交于點F.(1)求證:△ACD∽△BFD;(2)當tan∠ABD=1,AC=3時,求BF的長.22.(10分)每年十月的第二個周四是世界愛眼日,為預防近視,超市決定對某型號護眼臺燈進行降價銷售.降價前,進價為30元的護眼臺燈以80元售出,平均每月能售出200盞,調(diào)查表明:這種護眼臺燈每盞售價每降低1元,其月平均銷售量將增加10盞.(1)寫出月銷售利潤y(單位:元)與銷售價x(單位:元/盞)之間的函數(shù)表達式;(2)當銷售價定為多少元時,所得月利潤最大?最大月利潤為多少元?23.(10分)如圖,在平面直角坐標xOy中,正比例函數(shù)y=kx的圖象與反比例函數(shù)y=的圖象都經(jīng)過點A(2,﹣2).(1)分別求這兩個函數(shù)的表達式;(2)將直線OA向上平移3個單位長度后與y軸交于點B,與反比例函數(shù)圖象在第四象限內(nèi)的交點為C,連接AB,AC,求點C的坐標及△ABC的面積.24.(10分)春秋旅行社為吸引市民組團去天水灣風景區(qū)旅游,推出了如下收費標準:某單位組織員工去天水灣風景區(qū)旅游,共支付給春秋旅行社旅游費用27000元,請問該單位這次共有多少員工去天水灣風景區(qū)旅游?25.(12分)已知二次函數(shù)(是常數(shù)).(1)當時,求二次函數(shù)的最小值;(2)當,函數(shù)值時,以之對應(yīng)的自變量的值只有一個,求的值;(3)當,自變量時,函數(shù)有最小值為-10,求此時二次函數(shù)的表達式.26.如圖為某海域示意圖,其中燈塔D的正東方向有一島嶼C.一艘快艇以每小時20nmile的速度向正東方向航行,到達A處時得燈塔D在東北方向上,繼續(xù)航行0.3h,到達B處時測得燈塔D在北偏東30°方向上,同時測得島嶼C恰好在B處的東北方向上,此時快艇與島嶼C的距離是多少?(結(jié)果精確到1nmile.參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
參考答案一、選擇題(每題4分,共48分)1、D【解析】根據(jù)已知一元二次方程有兩個相等的實數(shù)根得出k≠0,Δ=(-2k)2-4×k×4=0【詳解】因為關(guān)于x的一元二次方程kx2-2kx+4=0有兩個相等的實數(shù)根,所以k≠0,Δ=(-2k)2【點睛】此題考查根的判別式,解題關(guān)鍵在于利用判別式解答.2、C【解析】題中方程表示原計劃每天鋪設(shè)管道米,即實際每天比原計劃多鋪設(shè)米,結(jié)果提前天完成,選.3、C【分析】先計算出∠PBC+∠PCB=45°,則∠BPC=135°,利用圓周角定理可判斷點P在以BC為弦的⊙O上,如圖,連接OA交于P′,作所對的圓周角∠BQC,利用圓周角定理計算出∠BOC=90°,從而得到△OBC為等腰直角三角形,四邊形ABOC為正方形,所以O(shè)A=BC=2,OB=,根據(jù)三角形三邊關(guān)系得到AP≥OA﹣OP(當且僅當A、P、O共線時取等號,即P點在P′位置),于是得到AP的最小值.【詳解】解:∵△ABC為等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴點P在以BC為弦的⊙O上,如圖,連接OA交于P′,作所對的圓周角∠BQC,則∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC為等腰直角三角形,∴四邊形ABOC為正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(當且僅當A、P、O共線時取等號,即P點在P′位置),∴AP的最小值為2﹣.故選:C.【點睛】本題考查了圓周角定理及等腰直角三角形的性質(zhì).圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.4、C【解析】根據(jù)反比函數(shù)的解析式y(tǒng)=(k≠0),可得k=xy,然后分別代入P、Q點的坐標,可得:-2×(-3)=6≠3×(-2),故不在同一反比例函數(shù)的圖像上;2×(-3)=-6≠2×3,故不正確同一反比例函數(shù)的圖像上;2×3=6=(-4)×(-),在同一反比函數(shù)的圖像上;-2×3≠(-3)×(-2),故不正確同一反比例函數(shù)的圖像上.故選C.點睛:此題主要考查了反比例函數(shù)的圖像與性質(zhì),解題關(guān)鍵是求出函數(shù)的系數(shù)k,比較k的值是否相同來得出是否在同一函數(shù)的圖像上.5、B【分析】首先由圓的性質(zhì)得出OC=OD,進而得出∠CDO=∠DCO,∠COD=70°,然后由圓周角定理得出∠CAD.【詳解】由已知,得OC=OD∴∠CDO=∠DCO=55°∴∠COD=180°-∠CDO-∠DCO=180°-55°-55°=70°∵∠COD為弧CD所對的圓心角,∠CAD為弧CD所對的圓周角∴∠CAD=∠COD=35°故答案為B.【點睛】此題主要考查對圓周角定理的運用,熟練掌握,即可解題.6、C【分析】根據(jù)中心對稱圖形和軸對稱圖形的定義逐項進行判斷即可.【詳解】A、是中心對稱圖形,但不是軸對稱圖形,故不符合題意;B、是軸對稱圖形,但不是中心對稱圖形,故不符合題意;C、既是中心對稱圖形,又是軸對稱圖形,符合題意;D、既不是中心對稱圖形,也不是軸對稱圖形,故不符合題意.故選:C.【點睛】本題考查中心對稱圖形和軸對稱圖形的定義,熟練掌握定義是關(guān)鍵.7、C【解析】試題分析:根據(jù)特殊角的三角函數(shù)值可得:∠A=60°.8、C【分析】根據(jù)二次函數(shù)的圖象可知拋物線開口向上,對稱軸為x=-1,且過點(1,0),根據(jù)對稱軸可得拋物線與x軸的另一個交點為(-3,0),把(1,0)代入可對①做出判斷;由對稱軸為x=-1,可對②做出判斷;根據(jù)二次函數(shù)與一元二次方程的關(guān)系,可對③做出判斷;根據(jù)a、c的符號,以及對稱軸可對④做出判斷;最后綜合得出答案.【詳解】解:由圖象可知:拋物線開口向上,對稱軸為直線x=-1,過(1,0)點,
把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正確;對稱軸為直線x=-1,即:整理得,b=2a,因此②不正確;由拋物線的對稱性,可知拋物線與x軸的兩個交點為(1,0)(-3,0),因此方程ax2+bx+c=0的兩根分別為-3和1;故③是正確的;
由a>0,b>0,c<0,且b=2a,則a-2b+c=a-4a+c=-3a+c<0,因此④不正確;
故選:C.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)之間的關(guān)系,能夠根據(jù)開口判斷a的符號,根據(jù)與x軸,y軸的交點判斷c的值以及b用a表示出的代數(shù)式是解題的關(guān)鍵.9、C【解析】試題解析:根據(jù)圖象可得當時,x的取值范圍是:x<?6或0<x<2.故選C.10、A【解析】試題分析:因為一枚質(zhì)地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是.故選A.考點:概率公式.11、C【分析】根據(jù)隨機事件,必然事件,不可能事件的定義對每一選項進行判斷即可.【詳解】A、必然事件,不符合題意;B、不可能事件,不符合題意;C、隨機事件,符合題意;D、不可能事件,不符合題意;故選C.【點睛】本題考查隨機事件,正確理解隨機事件,必然事件,不可能事件的定義是解題的關(guān)鍵.12、A【分析】分別根據(jù)垂徑定理及圓周角定理對各選項進行分析即可.【詳解】解:∵DC是⊙O直徑,弦AB⊥CD于點F,
∴AF=BF,,∠DBC=90°,
∴B、C、D正確;
∵點F不一定是OC的中點,
∴A錯誤.故選:A.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.二、填空題(每題4分,共24分)13、(30+30)【分析】過點C作CD⊥AB,則在Rt△ACD中易得AD的長,再在Rt△BCD中求出BD,相加可得AB的長.【詳解】解:過C作CD⊥AB于D點,由題意可得,
∠ACD=30°,∠BCD=45°,AC=1.
在Rt△ACD中,cos∠ACD=,∴AD=AC=30,CD=AC?cos∠ACD=1×,在Rt△DCB中,∵∠BCD=∠B=45°,
∴CD=BD=30,∴AB=AD+BD=30+30.答:此時輪船所在的B處與小島A的距離是(30+30)海里.
故答案為:(30+30).【點睛】此題主要考查了解直角三角形的應(yīng)用-方向角問題,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.14、-1【分析】根據(jù)一元二次方程的定義:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫一元二次方程進行分析即可.【詳解】解:依題意得:|m|=1,且m-1≠0,
解得m=-1.
故答案為:-1.【點睛】本題考查了一元二次方程的定義,關(guān)鍵是掌握一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是1.15、60°.【分析】先根據(jù)特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),再根據(jù)三角形內(nèi)角和定理求出∠C即可作出判斷.【詳解】∵△ABC中,∠A、∠B都是銳角,sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案為:60°.【點睛】本題考查的是特殊角的三角函數(shù)值及三角形內(nèi)角和定理,比較簡單.16、﹣1【分析】由根與系數(shù)的關(guān)系可求得a+b與ab的值,代入求值即可.【詳解】∵a,b是方程x2+x﹣2018=0的兩個實數(shù)根,∴a+b=﹣1,ab=﹣2018,∴(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2018﹣(﹣1)+1=﹣1,故答案為﹣1.【點睛】本題主要考查根與系數(shù)的關(guān)系,掌握一元二次方程的兩根之和等于﹣、兩根之積等于是解題的關(guān)鍵.17、.【分析】通過∠ABC=45°,可得出∠AOC=90°,根據(jù)OA=OC就可以結(jié)合勾股定理求出AC的長了.【詳解】∵∠ABC=45°,∴∠AOC=90°,∴OA1+OC1=AC1.∴OA1+OA1=(1)1.∴OA=.故⊙O的半徑為.故答案為:.18、【分析】由l1∥l2,根據(jù)根據(jù)平行線分線段成比例定理可得FG=AC;由l2∥l3,根據(jù)根據(jù)平行線分線段成比例定理可得==.【詳解】∵l1∥l2,AE=EF=1,∴==1,∴FG=AC;∵l2∥l3,∴==,∴==,故答案為.【點睛】本題考查了平行線分線段成比例定理,掌握平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例是解題的關(guān)鍵.三、解答題(共78分)19、(1)(2).【分析】⑴將PC+kPD轉(zhuǎn)化成PC+MP,當PC+kPD最小,即PC+MP最小,圖中可以看出當C、P、M共線最小,利用勾股定理求出即可;⑵根據(jù)上一問得出的結(jié)果,把圖2的各個點與圖1對應(yīng)代入,C對應(yīng)O,D對應(yīng)P,A對應(yīng)C,B對應(yīng)M,當D在AB上時為最小值,所以==【詳解】解,,當取最小值時,有最小值,即三點共線時有最小值,利用勾股定理得的最小值為,提示:,,的最小值為.【點睛】此題主要考查了新定義的理解與應(yīng)用,快速準確的掌握新定義并能舉一反三是解題的關(guān)鍵.20、臺燈的高約為45cm.【分析】如圖,作DG⊥AB,EF⊥AB,交AB延長線于G、F,DH⊥EF于H,可得四邊形DGFH是矩形,可得DG=FH,根據(jù)∠A的余弦可求出AC的長,進而可得AD的長,根據(jù)∠A的正弦即可求出DG的長,由∠ADE=135°可得∠EDH=15°,根據(jù)∠DEH的正弦可得EH的長,根據(jù)EF=EH+FH求出EF的長即可得答案.【詳解】如圖,作DG⊥AB,EF⊥AB,交AB延長線于G、F,DH⊥EF于H,∴四邊形DGFH是矩形,∴DG=FH,∵∠A=60°,AB=16,∴AC=AB·cos60°=16×=8,∴AD=AC+CD=8+40=48,∴DG=AD·sin60°=24,∵DH⊥EF,AF⊥EF,∴DH//AF,∴∠ADH=180°-∠A=120°,∵∠ADE=135°,∴∠EDH=∠ADE-∠ADH=15°,∵DE=15,∴EH=DE·sin15°≈3.9,∴EF=EH+FH=EH+DG=24+3.9≈45,答:臺燈的高約為45cm.【點睛】本題主要考查解直角三角形的應(yīng)用,正確應(yīng)用銳角三角函數(shù)的關(guān)系是解題關(guān)鍵.21、(1)見解析;(2)3【分析】(1)只要證明∠DBF=∠DAC,即可判斷.(2)利用相似三角形的性質(zhì)即可解決問題.【詳解】(1)證明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)∵tan∠ABD=1,∠ADB=90°∴=1,∴AD=BD,∵△ACD∽△BFD,∴,∴BF=AC=3【點睛】本題考查相似三角形的性質(zhì)和判定,同角的余角相等,直角三角形兩銳角互余等知識,解題的關(guān)鍵是正確尋找相似三角形,利用新三角形的性質(zhì)解決問題22、(1)y=﹣10x2+1300x﹣30000;(2)銷售價定為65元時,所得月利潤最大,最大月利潤為12250元.【分析】(1)根據(jù)“總利潤=單件利潤×銷售量”可得;(2)利用配方法求出二次函數(shù)最值即可得出答案.【詳解】解:(1)設(shè)售價為x元/盞,月銷售利潤y元,根據(jù)題意得:y=(x﹣30)[200+10(80﹣x)]=﹣10x2+1300x﹣30000;(2)∵y=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∴當銷售價定為65元時,所得月利潤最大,最大月利潤為12250元.【點睛】此題主要考查了二次函數(shù)的應(yīng)用以及二次函數(shù)最值求法,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系.23、(1)反比例函數(shù)表達式為,正比例函數(shù)表達式為;(2),.【解析】試題分析:(1)將點A坐標(2,-2)分別代入y=kx、y=求得k、m的值即可;(2)由題意得平移后直線解析式,即可知點B坐標,聯(lián)立方程組求解可得第四象限內(nèi)的交點C得坐標,可將△ABC的面積轉(zhuǎn)化為△OBC的面積.試題解析:()把代入反比例函數(shù)表達式,得,解得,∴反比例函數(shù)表達式為,把代入正比例函數(shù),得,解得,∴正比例函數(shù)表達式為.()直線由直線向上平移個單位所得,∴直線的表達式為,由,解得或,∵在第四象限,∴,連接,∵,,,.24、該單位這次共有30名員工去天水灣風景區(qū)旅游.【分析】首先根據(jù)共支付給春秋旅行社旅游費用27000元,確定旅游的人數(shù)的范圍,然后根據(jù)每人的旅游費用×人數(shù)=總費用,設(shè)該單位這次共有x名員工去天水灣風景區(qū)旅游.即可由對話框,超過25人的人數(shù)為(x﹣25)人,每人降低20元,共降低了20(x﹣25)元.實際每人收了[1000﹣20(x﹣25)]元,列出方程求解.【詳解】設(shè)該單位這次共有名員工去天水灣風景區(qū)旅游,因為,所以員工人數(shù)一定超過25人,可得方程,整理,得,解得:,當時,,故舍去,當時,,符合題意,答:該單位這次共有30名員工去天水灣風景區(qū)旅游.25、(1)當x=2時,;(2)b=±3;
(3)或【分析】(1)將代入并化簡,從而求出二次函數(shù)的最小值;(2)根據(jù)自變量的值只有一個,得出根的判別式,從而求出的值;(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)廚房設(shè)備購銷協(xié)議2024版B版
- 2024版河南省事業(yè)編制人員勞動協(xié)議樣式版B版
- 二零二五年度大巴車租賃與城市慶典活動策劃合同3篇
- 二零二五年度酒吧股份投資及風險控制合同3篇
- 二零二五年度科技園區(qū)場地租賃詳細協(xié)議2篇
- 2024版短期勞務(wù)合同范例
- 濰坊護理職業(yè)學院《材料分析測試與表征》2023-2024學年第一學期期末試卷
- 太原學院《橋梁工程(一)》2023-2024學年第一學期期末試卷
- 2024年食堂管理員與廚師合同3篇
- 二零二五年建筑工程施工企業(yè)工程結(jié)算與審計合同2篇
- 智慧農(nóng)業(yè)總體實施方案(2篇)
- 天然甜味劑的開發(fā)與應(yīng)用
- 2024年大學試題(宗教學)-佛教文化筆試參考題庫含答案
- 農(nóng)村生活污水處理站運營維護方案
- 部編版小學語文四年級下冊二單元教材分析解讀主講課件
- 2023年譯林版英語五年級下冊Units-1-2單元測試卷-含答案
- 人教版三年級上冊脫式計算200題及答案
- 視覺傳達設(shè)計史平面設(shè)計的起源與發(fā)展課件
- 施工管理中的文檔管理方法與要求
- 醫(yī)技溝通與合作課件
- 混凝土企業(yè)銷售計劃書
評論
0/150
提交評論