版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省高郵市三垛中學中考數(shù)學仿真試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列四個圖形中,是中心對稱圖形的是()A. B. C. D.2.下列計算正確的是()A.2m+3n=5mnB.m2?m3=m6C.m8÷m6=m2D.(﹣m)3=m33.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?.下列計算錯誤的是()A.a(chǎn)?a=a2 B.2a+a=3a C.(a3)2=a5 D.a(chǎn)3÷a﹣1=a45.點是一次函數(shù)圖象上一點,若點在第一象限,則的取值范圍是().A. B. C. D.6.如圖,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于點E,點D為AB的中點,連接DE,則△BDE的周長是()A.3 B.4 C.5 D.67.如圖,實數(shù)﹣3、x、3、y在數(shù)軸上的對應點分別為M、N、P、Q,這四個數(shù)中絕對值最小的數(shù)對應的點是()A.點M B.點N C.點P D.點Q8.據(jù)統(tǒng)計,第22屆冬季奧林匹克運動會的電視轉播時間長達88000小時,社交網(wǎng)站和國際奧委會官方網(wǎng)站也創(chuàng)下冬奧會收看率紀錄.用科學記數(shù)法表示88000為()A.0.88×105B.8.8×104C.8.8×105D.8.8×1069.世界上最小的開花結果植物是澳大利亞的出水浮萍,這種植物的果實像一個微小的無花果,質量只有0.0000000076克,將數(shù)0.0000000076用科學記數(shù)法表示為()A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×10810.若一次函數(shù)y=(2m﹣3)x﹣1+m的圖象不經(jīng)過第三象限,則m的取值范圖是()A.1<m< B.1≤m< C.1<m≤ D.1≤m≤二、填空題(共7小題,每小題3分,滿分21分)11.已知:如圖,矩形ABCD中,AB=5,BC=3,E為AD上一點,把矩形ABCD沿BE折疊,若點A恰好落在CD上點F處,則AE的長為_____.12.已知:如圖,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.將△AOB繞頂點O,按順時針方向旋轉到△A1OB1處,此時線段OB1與AB的交點D恰好為AB的中點,則線段B1D=__________cm.13.如圖,矩形OABC的邊OA,OC分別在x軸,y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,點B′和B分別對應).若AB=2,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過A′,B,則k的值為_____.14.因式分解:.15.已知△ABC∽△DEF,若△ABC與△DEF的相似比為,則△ABC與△DEF對應中線的比為_____.16.半徑是6cm的圓內(nèi)接正三角形的邊長是_____cm.17.如圖,在等腰△ABC中,AB=AC,BC邊上的高AD=6cm,腰AB上的高CE=8cm,則BC=_____cm三、解答題(共7小題,滿分69分)18.(10分)如圖,某校準備給長12米,寬8米的矩形室內(nèi)場地進行地面裝飾,現(xiàn)將其劃分為區(qū)域Ⅰ(菱形),區(qū)域Ⅱ(4個全等的直角三角形),剩余空白部分記為區(qū)域Ⅲ;點為矩形和菱形的對稱中心,,,,為了美觀,要求區(qū)域Ⅱ的面積不超過矩形面積的,若設米.甲乙丙單價(元/米2)(1)當時,求區(qū)域Ⅱ的面積.計劃在區(qū)域Ⅰ,Ⅱ分別鋪設甲,乙兩款不同的深色瓷磚,區(qū)域Ⅲ鋪設丙款白色瓷磚,①在相同光照條件下,當場地內(nèi)白色區(qū)域的面積越大,室內(nèi)光線亮度越好.當為多少時,室內(nèi)光線亮度最好,并求此時白色區(qū)域的面積.②三種瓷磚的單價列表如下,均為正整數(shù),若當米時,購買三款瓷磚的總費用最少,且最少費用為7200元,此時__________,__________.19.(5分)為了預防“甲型H1N1”,某學校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:藥物燃燒時,求y關于x的函數(shù)關系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關系式呢?研究表明,當空氣中每立方米的含藥量低于1.6mg時,學生方可進教室,那么從消毒開始,至少需要幾分鐘后,學生才能進入教室?研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?20.(8分)某科技開發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2500元,銷售單價定為3200元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按3200元銷售:若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價均降低5元,但銷售單價均不低于2800元.商家一次購買這種產(chǎn)品多少件時,銷售單價恰好為2800元?設商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數(shù)關系式,并寫出自變量x的取值范圍該公司的銷售人員發(fā)現(xiàn):當商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲的利潤越大,公司應將最低銷售單價調(diào)整為多少元?(其它銷售條件不變)21.(10分)某種蔬菜的銷售單價y1與銷售月份x之間的關系如圖(1)所示,成本y2與銷售月份之間的關系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)分別求出y1、y2的函數(shù)關系式(不寫自變量取值范圍);通過計算說明:哪個月出售這種蔬菜,每千克的收益最大?22.(10分)已知△ABC在平面直角坐標系中的位置如圖所示.分別寫出圖中點A和點C的坐標;畫出△ABC繞點C按順時針方向旋轉90°后的△A′B′C′;求點A旋轉到點A′所經(jīng)過的路線長(結果保留π).23.(12分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點B,連接CO并延長交⊙O于點D、E,連接AD并延長交BC于點F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結論;(2)求證:(3)若BC=AB,求tan∠CDF的值.24.(14分)文藝復興時期,意大利藝術大師達.芬奇研究過用圓弧圍成的部分圖形的面積問題.已知正方形的邊長是2,就能求出圖中陰影部分的面積.證明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S陰影=S1+S6=S1+S2+S3=.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】試題分析:根據(jù)中心對稱圖形的定義,結合選項所給圖形進行判斷即可.解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項正確;故選D.考點:中心對稱圖形.2、C【解析】
根據(jù)同底數(shù)冪的除法,底數(shù)不變指數(shù)相減;合并同類項,系數(shù)相加字母和字母的指數(shù)不變;同底數(shù)冪的乘法,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相乘,對各選項計算后利用排除法求解.【詳解】解:A、2m與3n不是同類項,不能合并,故錯誤;B、m2?m3=m5,故錯誤;C、正確;D、(-m)3=-m3,故錯誤;故選:C.【點睛】本題考查同底數(shù)冪的除法,合并同類項,同底數(shù)冪的乘法,冪的乘方很容易混淆,一定要記準法則才能做題.3、C【解析】
根據(jù)圓錐的底面周長等于側面展開圖的扇形弧長,列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長是:,
設圓錐的底面半徑是rcm,
則,
解得:.
即這個圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.
圓錐形冰淇淋紙?zhí)椎母邽椋?/p>
故選:C.【點睛】本題綜合考查有關扇形和圓錐的相關計算解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應關系:圓錐的母線長等于側面展開圖的扇形半徑;圓錐的底面周長等于側面展開圖的扇形弧長正確對這兩個關系的記憶是解題的關鍵.4、C【解析】
解:A、a?a=a2,正確,不合題意;B、2a+a=3a,正確,不合題意;C、(a3)2=a6,故此選項錯誤,符合題意;D、a3÷a﹣1=a4,正確,不合題意;故選C.【點睛】本題考查冪的乘方與積的乘方;合并同類項;同底數(shù)冪的乘法;負整數(shù)指數(shù)冪.5、B【解析】試題解析:把點代入一次函數(shù)得,.∵點在第一象限上,∴,可得,因此,即,故選B.6、C【解析】
根據(jù)等腰三角形的性質可得BE=BC=2,再根據(jù)三角形中位線定理可求得BD、DE長,根據(jù)三角形周長公式即可求得答案.【詳解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=BC=2,又∵D是AB中點,∴BD=AB=,∴DE是△ABC的中位線,∴DE=AC=,∴△BDE的周長為BD+DE+BE=++2=5,故選C.【點睛】本題考查了等腰三角形的性質、三角形中位線定理,熟練掌握三角形中位線定理是解題的關鍵.7、D【解析】∵實數(shù)-3,x,3,y在數(shù)軸上的對應點分別為M、N、P、Q,
∴原點在點M與N之間,
∴這四個數(shù)中絕對值最大的數(shù)對應的點是點Q.
故選D.8、B【解析】試題分析:根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).因此,∵88000一共5位,∴88000=8.88×104.故選B.考點:科學記數(shù)法.9、A【解析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:將0.0000000076用科學計數(shù)法表示為.故選A.【點睛】本題考查了用科學計數(shù)法表示較小的數(shù),一般形式為a×,其中,n為由原數(shù)左邊起第一個不為0的數(shù)字前面的0的個數(shù)所決定.10、B【解析】
根據(jù)一次函數(shù)的性質,根據(jù)不等式組即可解決問題;【詳解】∵一次函數(shù)y=(2m-3)x-1+m的圖象不經(jīng)過第三象限,∴,解得1≤m<.故選:B.【點睛】本題考查一次函數(shù)的圖象與系數(shù)的關系等知識,解題的關鍵是學會用轉化的思想思考問題,屬于中考??碱}型.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
根據(jù)矩形的性質得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根據(jù)折疊得到BF=AB=5,EF=EA,根據(jù)勾股定理求出CF,由此得到DF的長,再根據(jù)勾股定理即可求出AE.【詳解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折疊的性質可知,BF=AB=5,EF=EA,在Rt△BCF中,CF==4,∴DF=DC﹣CF=1,設AE=x,則EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=,故答案為:.【點睛】此題考查矩形的性質,勾股定理,折疊的性質,由折疊得到BF的長度是解題的關鍵.12、1.1【解析】試題解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵點D為AB的中點,∴OD=AB=2.1cm.∵將△AOB繞頂點O,按順時針方向旋轉到△A1OB1處,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案為1.1.13、【解析】
解:∵四邊形ABCO是矩形,AB=1,∴設B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點A′,B,∴m?m=m,∴m=,∴k=故答案為14、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應用平方差公式分解即可:.15、3:4【解析】由于相似三角形的相似比等于對應中線的比,∴△ABC與△DEF對應中線的比為3:4故答案為3:4.16、6【解析】
根據(jù)題意畫出圖形,作出輔助線,利用垂徑定理及等邊三角形的性質解答即可.【詳解】如圖所示,OB=OA=6,∵△ABC是正三角形,由于正三角形的中心就是圓的圓心,且正三角形三線合一,所以BO是∠ABC的平分線;∠OBD=60°×=30°,BD=cos30°×6=6×=3;根據(jù)垂徑定理,BC=2×BD=6,故答案為6.【點睛】本題主要考查了正多邊形和圓,正三角形的性質,熟練掌握等邊三角形的性質是解題的關鍵,根據(jù)圓的內(nèi)接正三角形的特點,求出內(nèi)心到每個頂點的距離,可求出內(nèi)接正三角形的邊長.17、【解析】
根據(jù)三角形的面積公式求出=,根據(jù)等腰三角形的性質得到BD=DC=BC,根據(jù)勾股定理列式計算即可.【詳解】∵AD是BC邊上的高,CE是AB邊上的高,∴AB?CE=BC?AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2?BD2=AD2,∴AB2=BC2+36,即BC2=BC2+36,解得:BC=.故答案為:.【點睛】本題考查的是等腰三角形的性質、勾股定理的應用和三角形面積公式的應用,根據(jù)三角形的面積公式求出腰與底的比是解題的關三、解答題(共7小題,滿分69分)18、(1)8m2;(2)68m2;(3)40,8【解析】
(1)根據(jù)中心對稱圖形性質和,,,可得,即可解當時,4個全等直角三角形的面積;(2)白色區(qū)域面積即是矩形面積減去一二部分的面積,分別用含x的代數(shù)式表示出菱形和四個全等直角三角形的面積,列出含有x的解析式表示白色區(qū)域面積,并化成頂點式,根據(jù),,,求出自變量的取值范圍,再根據(jù)二次函數(shù)的增減性即可解答;(3)計算出x=2時各部分面積以及用含m、n的代數(shù)式表示出費用,因為m,n均為正整數(shù),解得m=40,n=8.【詳解】(1)∵為長方形和菱形的對稱中心,,∴∵,,∴∴當時,,(2)∵,∴-,∵,,∴解不等式組得,∵,結合圖像,當時,隨的增大而減小.∴當時,取得最大值為(3)∵當時,SⅠ=4x2=16m2,=12m2,=68m2,總費用:16×2m+12×5n+68×2m=7200,化簡得:5n+14m=600,因為m,n均為正整數(shù),解得m=40,n=8.【點睛】本題考查中心對稱圖形性質,菱形、直角三角形的面積計算,二次函數(shù)的最值問題,解題關鍵是用含x的二次函數(shù)解析式表示出白色區(qū)面積.19、(1);(2)至少需要30分鐘后生才能進入教室.(3)這次消毒是有效的.【解析】
(1)藥物燃燒時,設出y與x之間的解析式y(tǒng)=k1x,把點(8,6)代入即可,從圖上讀出x的取值范圍;藥物燃燒后,設出y與x之間的解析式y(tǒng)=,把點(8,6)代入即可;(2)把y=1.6代入反比例函數(shù)解析式,求出相應的x;(3)把y=3代入正比例函數(shù)解析式和反比例函數(shù)解析式,求出相應的x,兩數(shù)之差與10進行比較,大于或等于10就有效.【詳解】解:(1)設藥物燃燒時y關于x的函數(shù)關系式為y=k1x(k1>0)代入(8,6)為6=8k1∴k1=設藥物燃燒后y關于x的函數(shù)關系式為y=(k2>0)代入(8,6)為6=,∴k2=48∴藥物燃燒時y關于x的函數(shù)關系式為(0≤x≤8)藥物燃燒后y關于x的函數(shù)關系式為(x>8)∴(2)結合實際,令中y≤1.6得x≥30即從消毒開始,至少需要30分鐘后生才能進入教室.(3)把y=3代入,得:x=4把y=3代入,得:x=16∵16﹣4=12所以這次消毒是有效的.【點睛】現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用待定系數(shù)法求出它們的關系式.20、(1)商家一次購買這種產(chǎn)品1件時,銷售單價恰好為2800元;(2)當0≤x≤10時,y=700x,當10<x≤1時,y=﹣5x2+750x,當x>1時,y=300x;(3)公司應將最低銷售單價調(diào)整為2875元.【解析】
(1)設件數(shù)為x,則銷售單價為3200-5(x-10)元,根據(jù)銷售單價恰好為2800元,列方程求解;(2)由利潤y=(銷售單價-成本單價)×件數(shù),及銷售單價均不低于2800元,按0≤x≤10,10<x≤50兩種情況列出函數(shù)關系式;(3)由(2)的函數(shù)關系式,利用二次函數(shù)的性質求利潤的最大值,并求出最大值時x的值,確定銷售單價.【詳解】(1)設商家一次購買這種產(chǎn)品x件時,銷售單價恰好為2800元.由題意得:3200﹣5(x﹣10)=2800,解得:x=1.答:商家一次購買這種產(chǎn)品1件時,銷售單價恰好為2800元;(2)設商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,由題意得:當0≤x≤10時,y=(3200﹣2500)x=700x,當10<x≤1時,y=[3200﹣5(x﹣10)﹣2500]?x=﹣5x2+750x,當x>1時,y=(2800﹣2500)?x=300x;(3)因為要滿足一次購買數(shù)量越多,所獲利潤越大,所以y隨x增大而增大,函數(shù)y=700x,y=300x均是y隨x增大而增大,而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75時,y隨x增大而增大.由上述分析得x的取值范圍為:10<x≤75時,即一次購買75件時,恰好是最低價,最低價為3200﹣5?(75﹣10)=2875元,答:公司應將最低銷售單價調(diào)整為2875元.【點睛】本題考查了一次、二次函數(shù)的性質在實際生活中的應用.最大銷售利潤的問題常利二次函數(shù)的增減性來解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結合實際選擇最優(yōu)方案.21、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大為.【解析】
(1)觀察圖象找出點的坐標,利用待定系數(shù)法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W與x的函數(shù)關系式,利用配方求出二次函數(shù)的最大值.【詳解】解:(1)設y1=kx+b,將(3,5)和(6,3)代入得,,解得.∴y1=﹣x+1.設y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=.∴y2=(x﹣6)2+1,即y2=x2﹣4x+2.(2)收益W=y(tǒng)1﹣y2,=﹣x+1﹣(x2﹣4x+2)=﹣(x﹣5)2+,∵a=﹣<0,∴當x=5時,W最大值=.故5月出售每千克收益最大,最大為元.【點睛】本題考查了一次函數(shù)和二次函數(shù)的應用,熟練掌握待定系數(shù)法求解析式是解題關鍵,掌握配方法是求二次函數(shù)最大值常用的方法22、(1)、(2)見解析(3)【解析】試題分析:(1)根據(jù)點的平面直角坐標系中點的位置寫出點的坐標;(2)根據(jù)旋轉圖形的性質畫出旋轉后的圖形;(3)點A所經(jīng)過的路程是以點C為圓心,AC長為半徑的扇形的弧長.試題解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度殘障人士職業(yè)康復服務合同2篇
- 溫州職業(yè)技術學院《BM概論與實訓》2023-2024學年第一學期期末試卷
- 2025年度智能設備租賃服務與技術支持合同2篇
- 二零二五年度金融資產(chǎn)證券化股份質押交易合同3篇
- 2025年度學校窗簾更換及節(jié)能環(huán)保合同3篇
- 個人財產(chǎn)質押借款協(xié)議書(2024年修訂)版
- 個人房產(chǎn)抵押貸款協(xié)議范本(2024版)版B版
- 渭南師范學院《樂理視唱二》2023-2024學年第一學期期末試卷
- 2024版簡易自愿離婚合同書范例一
- 二零二五年度新能源汽車采購合同質量監(jiān)控與配送管理細則3篇
- DB33T 2570-2023 營商環(huán)境無感監(jiān)測規(guī)范 指標體系
- 上海市2024年中考英語試題及答案
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標準(2024版)宣傳海報
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標準(2024版)宣傳畫冊
- 垃圾車駕駛員聘用合同
- 2025年道路運輸企業(yè)客運駕駛員安全教育培訓計劃
- 南京工業(yè)大學浦江學院《線性代數(shù)(理工)》2022-2023學年第一學期期末試卷
- 2024版機床維護保養(yǎng)服務合同3篇
- 《論拒不執(zhí)行判決、裁定罪“執(zhí)行能力”之認定》
- 工程融資分紅合同范例
- 2024年貴州省公務員錄用考試《行測》真題及答案解析
評論
0/150
提交評論