河南省南陽市淅川縣2021-2022學年七下期中數(shù)學試卷(解析版)_第1頁
河南省南陽市淅川縣2021-2022學年七下期中數(shù)學試卷(解析版)_第2頁
河南省南陽市淅川縣2021-2022學年七下期中數(shù)學試卷(解析版)_第3頁
河南省南陽市淅川縣2021-2022學年七下期中數(shù)學試卷(解析版)_第4頁
河南省南陽市淅川縣2021-2022學年七下期中數(shù)學試卷(解析版)_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022年春期七年級期中質(zhì)量評估數(shù)學試卷注意事項:1.本題卷共8頁,三大題,滿分120分,考試時間100分鐘.2.本試卷上不要答題,請按答題卡上注意事項的要求直接把答案寫在答題卡上.答在試題卷上的答案無效.一、選擇題:(每小題3分,共30分)下列各小題均有四個答案,其中只有一個是正確的,將正確答案的代號字母填入題后括號內(nèi).1.下列方程中:①x﹣2=;②x=6;③;④x2﹣4x=3;⑤0.3x=1;⑥x+2y=0,其中一元一次方程的個數(shù)是()A.3 B.4 C.5 D.6【答案】A【解析】【分析】根據(jù)一元一次方程的定義:一元一次方程只含有1個未知數(shù),并且未知數(shù)的次數(shù)是1的整式方程,進行逐一判斷即可.【詳解】解:①x﹣2=不是整式方程,不是一元一次方程,故不符合題意:②x=6是一元一次方程,故符合題意:③和⑤0.3x=1符合一元一次方程的定義,故符合題意;④x2﹣4x=3未知數(shù)的最高次不是1,不是一元一次方程,故不符合題意;⑥x+2y=0含有兩個未知數(shù),不是一元一次方程,故不符合題意;故選:A.【點睛】本題主要考查一元一次方程的定義,需注意定義里的每一個條件都要滿足,理解掌握定義是解答關鍵.2.方程在正整數(shù)范圍內(nèi)的解有()A.1個 B.3個 C.4個 D.無數(shù)個【答案】B【解析】【分析】二元一次方程有無數(shù)組解,但它的正整數(shù)解是有數(shù)的,首先用其中一個未知數(shù)表示另一個未知數(shù),然后可給定y一個正整數(shù)的值,計算x的值即可.【詳解】解:∵方程可變形為x=7?2y,∴當y=1時,x=5;當y=2時,x=3;當y=3時,x=1,∴方程x+2y=7的正整數(shù)解有:,,,故選:B.【點睛】本題考查了二元一次方程,二元一次方程有無數(shù)組解,確定二元一次方程的特殊解,解題的關鍵是用其中一個未知數(shù)表示另一個未知數(shù).3.“的2倍與的相反數(shù)的差不小于1”,用不等式表示為()A. B. C. D.【答案】B【解析】【分析】2倍與的相反數(shù)的差表示為,不小于表示的意思是大于或等于,從而可得出不等式.【詳解】解:“的2倍與的相反數(shù)的差不小于1”,用不等式表示為.故選:B.【點睛】本題主要考查了列不等式,解決本題關鍵是理解“不小于1”用數(shù)學符號表示為:“≥1”.4.若關于x的一元一次方程的解是x=-1,則k的值是()A. B. C.1 D.0【答案】C【解析】【分析】將x=-1代入方程,解方程即可.【詳解】解:將x=-1代入方程,得,去分母得2(-2-k)-3(-1-3k)=6去括號得-4-2k+3+9k=6移項、合并同類項得7k=7系數(shù)化為1得k=1,故選:C.【點睛】此題考查了一元一次方程的解的定義,解一元一次方程,正確掌握解一元一次方程的法則是解題的關鍵.5.不等式組的解集在數(shù)軸上表示正確的是()A. B. C. D.【答案】A【解析】【分析】分別求出各不等式的解集,再在數(shù)軸上表示出來即可.【詳解】解:,

由①得,x>-3,

由②得,x≤2,

故不等式組的解集為:-3<x≤2,

在數(shù)軸上表示為:

故選A.【點睛】本題考查的是解一元一次不等式組,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答本題的關鍵.6.若關于x,y的方程組的解滿足x+y=4,則m的值為()A.-2 B.2 C.-1 D.1【答案】D【解析】【分析】根據(jù)題意組建新的方程組求解,然后將、的值代入得到一個關于的方程求解即可.【詳解】解:由題意得:,解得,∴,解得.故選:D.【點睛】本題主要考查了二元一次方程組的綜合運用,熟練掌握相關方法是解題關鍵.7.小麗同學在做作業(yè)時,不小心將方程2(x-3)-■=x+1中的一個常數(shù)污染了,在詢問老師后,老師告訴她方程的解是x=9,請問這個被污染的常數(shù)■是()A.4 B.3 C.2 D.1【答案】C【解析】【分析】把x=9代入原方程即可求解.【詳解】把x=9代入方程2(x-3)-■=x+1得2×6-■=10∴■=12-10=2故選C.【點睛】此題主要考查方程解,解題的關鍵是把方程的根代入原方程.8.用四個全等的矩形和一個小正方形拼成如圖所示的大正方形,已知大正方形的面積是144,小正方形的面積是4,若用x,y表示矩形的長和寬(x>y),則下列關系式中不正確的是()A. B. C. D.【答案】D【解析】【分析】能夠根據(jù)大正方形和小正方形的面積分別求得正方形的邊長,再根據(jù)其邊長分別列方程,根據(jù)4個矩形的面積和等于兩個正方形的面積的差列方程.【詳解】A、根據(jù)大正方形的面積求得該正方形的邊長是12,則x+y=12,正確;B、根據(jù)小正方形的面積可以求得該正方形的邊長是2,則x-y=2,正確;C、根據(jù)4個矩形的面積和等于大正方形的面積減去小正方形的面積,即4xy=144-4=140,xy=35,正確;D、錯誤.故選D.【點睛】此題關鍵是能夠結(jié)合圖形和圖形的面積公式正確分析,運用排除法進行選擇.9.實數(shù)a,b,c在數(shù)軸上的對應點的位置如圖所示,則下列式子正確的是()A.b+c>0 B.a+b<a+c C.ac>bc D.ab>ac【答案】D【解析】【分析】先根據(jù)數(shù)軸的定義可得,,再根據(jù)不等式的基本性質(zhì)逐項判斷即可得.【詳解】由數(shù)軸的定義得:,,A、,此項錯誤,不符題意;B、,,此項錯誤,不符題意;C、,,此項錯誤,不符題意;D、,,此項正確,符合題意;故選:D.【點睛】本題考查了數(shù)軸、不等式的基本性質(zhì),熟練掌握數(shù)軸的定義是解題關鍵.10.若不等式組恰有兩個整數(shù)解,則a的取值范圍是()A.-1≤a<0 B.-1<a≤0 C.-1≤a≤0 D.-1<a<0【答案】A【解析】【分析】首先解不等式組求得不等式組的解集,然后根據(jù)不等式組有兩個整數(shù)解即可確定整數(shù)解,從而得到關于a的不等式,求得a的范圍.【詳解】,解①得x<1,解②得x>a-1,則不等式組的解集是a-1<x<1.又∵不等式組有兩個整數(shù)解,∴整數(shù)解是0,-1.∴-2≤a-1-<-1,解得:-1≤a<0.故選A.【點睛】本題考查了不等式組的整數(shù)解,求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.二、填空題:(每小題3分,共15分)11.若是二元一次方程,則__________.【答案】9【解析】【分析】根據(jù)二元一次方程的定義可得關于m、n的方程,解方程即可求出m、n,然后把m、n的值代入所求式子計算即可.【詳解】解:∵是二元一次方程,∴3m-8=1,n-1=1,解得:m=3,n=2,∴.故答案為:9.【點睛】本題主要考查了二元一次方程的定義和有理數(shù)的乘方運算,屬于基礎題型,熟知二元一次方程的概念是關鍵.12.中國古代的數(shù)學專著《九章算術(shù)》有方程組問題“五只雀,六只燕,共重1斤(等于16兩),雀重燕輕.互換其中一只,恰好一樣重.”設每只雀、燕的重量各為x兩,y兩,則根據(jù)題意,可得方程組為_______________.【答案】【解析】【分析】根據(jù)五只雀,六只燕,共重1斤(等于16兩),雀重燕輕.互換其中一只,恰好一樣重列出方程即可.【詳解】解:設每只雀、燕的重量各為x兩,y兩,由根據(jù)題意得,故答案為:.【點睛】本題主要考查了從實際問題中抽象出二元一次方程組,正確理解題意是解題的關鍵.13.若方程組的解滿足方程,則a的值為_____.【答案】5【解析】【分析】首先解方程組求得x、y的值,然后代入方程中即可求出a的值.【詳解】解:解得把代入得:故答案為5.14.若關于的二元一次方程組,則與的關系是_________.【答案】【解析】【分析】利用加減消元法消去t即可得到答案.【詳解】解:,用①+②得:,∴,故答案為:.【點睛】本題主要考查了二元一次方程組的加減消元法,熟知加減消元法是解題的關鍵.15.關于x的不等式組無解,則化簡|3﹣a|+|a﹣2|的結(jié)果為_____.【答案】2a﹣5.【解析】【分析】根據(jù)不等式組無解,確定a的取值范圍,再結(jié)合絕對值的性質(zhì)去掉絕對值符號,進行化簡即可.【詳解】解:由“大大小小解不了”,得a﹣3≥15﹣3a,解得實數(shù)a的取值范圍是a≥,則|3﹣a|+|a﹣2|=a﹣3+a﹣2=2a﹣5.故答案為:2a﹣5.【點睛】本題考查了不等式組無解的問題,解題的關鍵是熟知“大大小小解不了”求出a的取值范圍.三、計算題:(本題共8小題,滿分75分)16.下列解方程的過程中,請在前面的括號內(nèi)填寫變形步驟,后面的括號內(nèi)填寫變形依據(jù).解:原方程可變形為.()(),得.()去括號,得()(),得()合并同類項,得(),得,()【答案】分數(shù)的基本性質(zhì),去分母,等式性質(zhì)2,去括號法則或分配律,移項,等式性質(zhì)1,系數(shù)化為1,等式性質(zhì)2.【解析】【分析】根據(jù)解一元一次方程的一般步驟,去分母,去括號,移項,合并同類項,系數(shù)化為1,進行計算即可.【詳解】解:原方程可變形為.(分數(shù)的基本性質(zhì))(去分母),得.(等式性質(zhì)2)去括號,得(去括號法則或分配律)(移項),得(等式性質(zhì)1)合并同類項,得(系數(shù)化1),得,(等式性質(zhì)2)故答案為:分數(shù)的基本性質(zhì),去分母,等式性質(zhì)2,去括號法則或分配律,移項,等式性質(zhì)1,系數(shù)化為1,等式性質(zhì)2.【點睛】本題考查了解一元一次方程,熟知解一元一次方程的一般步驟以及等式的基本性質(zhì)是解題的關鍵.17.解方程組:(1)(2)【答案】(1)(2)【解析】【分析】(1)利用代入消元法求解即可;(2)利用加減消元法求解即可.【小問1詳解】解:把①代入到②得:,解得,把代入到①得:,∴方程組的解為;【小問2詳解】解:整理得:,用①×2-②得,解得,把代入①得,解得,∴方程組的解為.【點睛】本題主要考查了解二元一次方程組,熟知解二元一次方程組的方法是解題的關鍵.18.解不等式組(1)將不等式組的解集在數(shù)軸上表示出來;(2)求出最小整數(shù)解與最大整數(shù)解的和.【答案】(1)見解析;(2)-1【解析】【分析】(1)求解方程組中的每個不等式,即可求解;(2)根據(jù)不等式組的解集,求出最小整數(shù)和最大整數(shù),即可求解.【小問1詳解】解:解不等式①得,x>-4,解不等式②得,x≤2,因此,不等式組的解集為-4<x≤2.在數(shù)軸上表示不等式組的解集,如圖:【小問2詳解】解:由(1)得,最小的整數(shù)解為-3,最大的整數(shù)解為2,最小整數(shù)解與最大整數(shù)解的和為-1.【點睛】此題考查了不等式組的求解,用數(shù)軸表示不等式組的解集,解題的關鍵是掌握不等式的求解方法,正確求得相應不等式的解集.19.甲隊有33人,乙隊有24人,因工作需要現(xiàn)要使甲隊人數(shù)是乙隊人數(shù)的2倍,則應從乙隊調(diào)多少人到甲隊?【答案】應從乙隊調(diào)5人到甲隊【解析】【分析】根據(jù)甲隊人數(shù)是乙隊人數(shù)的2倍,設從乙隊調(diào)x人到甲隊,分別表示出兩隊人數(shù),從而列出方程,求出答案.【詳解】解:設應從乙隊調(diào)人到甲隊,根據(jù)題意得:解之得.經(jīng)檢驗,符合題意.答:應從乙隊調(diào)5人到甲隊.【點睛】本題考查了一元一次方程的應用:根據(jù)甲隊人數(shù)是乙隊人數(shù)的2倍,得出等式方程是解決問題的關鍵.20.為何值時,方程組的解互為相反數(shù)?求這個方程組的解.【答案】m=-12,.【解析】【分析】由方程組的解互為相反數(shù)得到x+y=0,即y=-x,代入方程組即可求出m的值,確定出方程組,即可得出解.詳解】①+②得:6x=3m-18,即x=;①-②得:-10y=m+18,即y=-;根據(jù)題意得:x+y=0,即-=0,去分母得:30m-180=6m+108,移項合并得:24m=288,解得:m=12,方程組為解得:.21.我們規(guī)定,若關于的一元一次方程的解為,則稱該方程為“和解方程”.例如:的解為,且,則該方程是和解方程.請根據(jù)上面規(guī)定解答下列問題:(1)判斷方程是否是和解方程;(2)若關于的一元一次方程是和解方程,求的值.【答案】(1)不是(2)【解析】【分析】(1)求出方程的解,再根據(jù)和解方程的意義得出即可;(2)根據(jù)和解方程得出關于m的方程,求出方程的解即可.【詳解】解:(1)∵方程的解是,且,∴方程不是和解方程.(2)由題意,得.解得.∴的值為.【點睛】本題考查了一元一次方程的解的應用,能理解和解方程的意義是解此題的關鍵.22.閱讀以下例題:解方程:|3x|=1,解:①當3x≥0時,原方程可化為一元一次方程3x=1,解這個方程得x=;②當3x<0時,原方程可化為一元一次方程﹣3x=1,解這個方程得x=﹣.所以原方程的解是x=或x=﹣.(1)仿照例題解方程:|2x+1|=3.(2)探究:當b為何值時,方程|x﹣2|=b+1滿足:①無解;②只有一個解;③有兩個解.【答案】(1)x=1或x=﹣2;(2)當b<﹣1時,方程無解;當b=﹣1時,方程只有一個解;當b>﹣1時,方程有兩個解.【解析】【分析】(1)仿照例題分情況討論:①當2x+1≥0時,②當2x+1<0時,化簡絕對值,解關于x的一元一次方程即可求解;(2)|x﹣2|≥0恒成立,①若無解,則b+1<0,解不等式即可求解;②若只有一個解,則b+1=0,求解即可;③若有兩個解,則b+1>0,解不等式即可求解.【詳解】解:(1)①當2x+1≥0時,原方程可化為一元一次方程2x+1=3,解這個方程得x=1;②當2x+1<0時,原方程可化為一元一次方程﹣2x﹣1=3,解這個方程得x=﹣2;所以原方程的解是x=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論