版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
§2.8函數(shù)的圖象考試要求1.在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒?如圖象法、列表法、解析法)表示函數(shù).2.會(huì)畫簡單的函數(shù)圖象.3.會(huì)運(yùn)用函數(shù)圖象研究函數(shù)的性質(zhì),解決方程解的個(gè)數(shù)與不等式解的問題.知識(shí)梳理1.利用描點(diǎn)法作函數(shù)圖象的方法步驟2.利用圖象變換法作函數(shù)的圖象(1)平移變換(2)伸縮變換①y=f(x)eq\o(→,\s\up7(a>1,橫坐標(biāo)縮短為原來的\f(1,a)倍,縱坐標(biāo)不變,0<a<1,橫坐標(biāo)伸長為原來的\f(1,a)倍,縱坐標(biāo)不變))y=f(ax).②y=f(x)eq\o(→,\s\up7(a>1,縱坐標(biāo)伸長為原來的a倍,橫坐標(biāo)不變),\s\do5(0<a<1,縱坐標(biāo)縮短為原來的a倍,橫坐標(biāo)不變))y=af(x).
(3)對稱變換①y=f(x)eq\o(→,\s\up7(關(guān)于x軸對稱))y=-f(x).②y=f(x)eq\o(→,\s\up7(關(guān)于y軸對稱))y=f(-x).③y=f(x)eq\o(→,\s\up7(關(guān)于原點(diǎn)對稱))y=-f(-x).④y=ax(a>0且a≠1)eq\o(→,\s\up7(關(guān)于y=x對稱))y=logax(a>0且a≠1).(4)翻折變換①y=f(x)eq\o(→,\s\up7(保留x軸上方圖象),\s\do5(將x軸下方圖象翻折上去))y=|f(x)|.②y=f(x)eq\o(→,\s\up7(保留y軸右邊圖象,并作其),\s\do5(關(guān)于y軸對稱的圖象))y=f(|x|).常用結(jié)論1.函數(shù)y=f(x)與y=f(2a-x)的圖象關(guān)于直線x=a對稱.2.函數(shù)y=f(x)與y=2b-f(2a-x)的圖象關(guān)于點(diǎn)(a,b)對稱.思考辨析判斷下列結(jié)論是否正確(請?jiān)诶ㄌ?hào)中打“√”或“×”)(1)函數(shù)y=|f(x)|為偶函數(shù).(×)(2)函數(shù)y=f(1-x)的圖象,可由y=f(-x)的圖象向左平移1個(gè)單位長度得到.(×)(3)當(dāng)x∈(0,+∞)時(shí),函數(shù)y=|f(x)|與y=f(|x|)的圖象相同.(×)(4)函數(shù)y=f(x)的圖象關(guān)于y軸對稱即函數(shù)y=f(x)與y=f(-x)的圖象關(guān)于y軸對稱.(×)教材改編題1.下列圖象是函數(shù)y=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x<0,,x-1,x≥0))的圖象的是()答案C解析其圖象是由y=x2圖象中x<0的部分和y=x-1圖象中x≥0的部分組成.2.函數(shù)y=f(x)的圖象與y=ex的圖象關(guān)于y軸對稱,再把y=f(x)的圖象向右平移1個(gè)單位長度后得到函數(shù)y=g(x)的圖象,則g(x)=________.答案e-x+1解析f(x)=e-x,∴g(x)=e-(x-1)=e-x+1.
3.已知函數(shù)f(x)在R上單調(diào)且其部分圖象如圖所示,若不等式-2<f(x+t)<4的解集為(-1,2),則實(shí)數(shù)t的值為________.答案1解析由圖象可知不等式-2<f(x+t)<4即為f(3)<f(x+t)<f(0),故x+t∈(0,3),即不等式的解集為(-t,3-t),依題意可得t=1.題型一作函數(shù)的圖象例1作出下列函數(shù)的圖象:(1)y=2x+1-1;(2)y=|lg(x-1)|;(3)y=x2-|x|-2.解(1)將y=2x的圖象向左平移1個(gè)單位長度,得到y(tǒng)=2x+1的圖象,再將所得圖象向下平移1個(gè)單位長度,得到y(tǒng)=2x+1-1的圖象,如圖①所示.(2)首先作出y=lgx的圖象,然后將其向右平移1個(gè)單位長度,得到y(tǒng)=lg(x-1)的圖象,再把所得圖象在x軸下方的部分翻折到x軸上方,即得所求函數(shù)y=|lg(x-1)|的圖象,如圖②所示(實(shí)線部分).(3)y=x2-|x|-2=eq\b\lc\{\rc\(\a\vs4\al\co1(x2-x-2,x≥0,,x2+x-2,x<0,))函數(shù)為偶函數(shù),先用描點(diǎn)法作出[0,+∞)上的圖象,再根據(jù)對稱性作出(-∞,0)上的圖象,其圖象如圖③所示.教師備選作出下列函數(shù)的圖象:(1)y=2-|x|;(2)y=sin|x|.解(1)先作出y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x的圖象,保留y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x圖象中x≥0的部分,再作出y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x的圖象中x>0部分關(guān)于y軸的對稱部分,即得y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))|x|的圖象,如圖①實(shí)線部分.圖①圖②(2)當(dāng)x≥0時(shí),y=sin|x|與y=sinx的圖象完全相同,又y=sin|x|為偶函數(shù),圖象關(guān)于y軸對稱,其圖象如圖②.思維升華圖象變換法作函數(shù)的圖象(1)熟練掌握幾種基本初等函數(shù)的圖象.(2)若函數(shù)圖象可由某個(gè)基本初等函數(shù)的圖象經(jīng)過平移、翻折、對稱和伸縮得到,可利用圖象變換作出,但要注意變換順序.跟蹤訓(xùn)練1作出下列函數(shù)的圖象:(1)y=eq\f(2x-1,x-1);(2)y=|x2-4x+3|.解(1)y=eq\f(2x-1,x-1)=2+eq\f(1,x-1),故函數(shù)的圖象可由y=eq\f(1,x)的圖象向右平移1個(gè)單位長度,再向上平移2個(gè)單位長度得到,如圖①所示.(2)先用描點(diǎn)法作出函數(shù)y=x2-4x+3的圖象,再把x軸下方的圖象沿x軸向上翻折,x軸上方的圖象不變,如圖②實(shí)線部分所示.題型二函數(shù)圖象的識(shí)別例2(1)(2022·百師聯(lián)盟聯(lián)考)函數(shù)f(x)=eq\f(x·cosx,e|x|)的圖象大致為()答案D解析由題意知,f(x)的定義域?yàn)镽,f(-x)=eq\f(-x·cos-x,e|-x|)=eq\f(-x·cosx,e|x|)=-f(x),故f(x)為奇函數(shù),排除C;f(1)=eq\f(cos1,e)>0,排除A;f(2)=eq\f(2cos2,e2)<0,排除B.(2)(2022·泉州模擬)已知函數(shù)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(ex-1-1,x≤1,,log2x,x>1,))則函數(shù)y=f(1-x)的圖象大致為()答案B解析函數(shù)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(ex-1-1,x≤1,,log2x,x>1,))所以y=g(x)=f(1-x)=eq\b\lc\{\rc\(\a\vs4\al\co1(e-x-1,x≥0,,log21-x,x<0,))所以當(dāng)x=0時(shí),g(0)=e0-1=0,故選項(xiàng)A,C錯(cuò)誤;當(dāng)x≥0時(shí),g(x)=e-x-1單調(diào)遞減,故選項(xiàng)D錯(cuò)誤,選項(xiàng)B正確.
教師備選(2022·長春模擬)函數(shù)f(x)=cosπx+ln|2x|的大致圖象是()答案C解析因?yàn)閒(x)=cosπx+ln|2x|(x≠0),所以f(-x)=cos(-πx)+ln|-2x|=cosπx+ln|2x|=f(x),所以f(x)是偶函數(shù),其圖象關(guān)于y軸對稱,故排除選項(xiàng)A;f(1)=cosπ+ln2=-1+ln2<0,故排除選項(xiàng)B;f(2)=cos2π+ln4=1+2ln2>0,故排除選項(xiàng)D.思維升華識(shí)別函數(shù)的圖象的主要方法有:(1)利用函數(shù)的性質(zhì).如奇偶性、單調(diào)性、定義域等判斷.(2)利用函數(shù)的零點(diǎn)、極值點(diǎn)等判斷.(3)利用特殊函數(shù)值判斷.跟蹤訓(xùn)練2(1)函數(shù)f(x)=eq\f(3x-3-x,x4)的大致圖象為()答案B則f(x)是奇函數(shù),其圖象關(guān)于原點(diǎn)對稱,排除A,f(1)=3-eq\f(1,3)=eq\f(8,3)>0,排除D,當(dāng)x→+∞時(shí),3x→+∞,則f(x)→+∞,排除C,選項(xiàng)B符合.(2)如圖可能是下列哪個(gè)函數(shù)的圖象()A.y=2x-x2-1B.y=eq\f(2xsinx,4x+1)C.y=(x2-2x)exD.y=eq\f(x,lnx)答案C解析函數(shù)的定義域?yàn)镽,排除D;當(dāng)x<0時(shí),y>0,A中,x=-1時(shí),y=2-1-1-1=-eq\f(3,2)<0,排除A;B中,當(dāng)sinx=0時(shí),y=0,∴y=eq\f(2x·sinx,4x+1)有無數(shù)個(gè)零點(diǎn),排除B.題型三函數(shù)圖象的應(yīng)用命題點(diǎn)1研究函數(shù)的性質(zhì)例3已知函數(shù)f(x)=x|x|-2x,則下列結(jié)論正確的是()A.f(x)是偶函數(shù),單調(diào)遞增區(qū)間是(0,+∞)B.f(x)是偶函數(shù),單調(diào)遞減區(qū)間是(-∞,1)C.f(x)是奇函數(shù),單調(diào)遞減區(qū)間是(-1,1)D.f(x)是奇函數(shù),單調(diào)遞增區(qū)間是(-∞,0)答案C解析將函數(shù)f(x)=x|x|-2x去掉絕對值,得f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2-2x,x≥0,,-x2-2x,x<0,))畫出函數(shù)f(x)的圖象,如圖所示,觀察圖象可知,函數(shù)f(x)的圖象關(guān)于原點(diǎn)對稱,故函數(shù)f(x)為奇函數(shù),且在(-1,1)上單調(diào)遞減.命題點(diǎn)2函數(shù)圖象在不等式中的應(yīng)用例4若當(dāng)x∈(1,2)時(shí),函數(shù)y=(x-1)2的圖象始終在函數(shù)y=logax的圖象的下方,則實(shí)數(shù)a的取值范圍是________.答案(1,2]解析如圖,在同一平面直角坐標(biāo)系中畫出函數(shù)y=(x-1)2和y=logax的圖象.由于當(dāng)x∈(1,2)時(shí),函數(shù)y=(x-1)2的圖象恒在函數(shù)y=logax的圖象的下方,則eq\b\lc\{\rc\(\a\vs4\al\co1(a>1,,loga2≥1,))解得1<a≤2.命題點(diǎn)3求參數(shù)的取值范圍例5已知函數(shù)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(2x-x,x≤0,,log2x-x,x>0,))若方程f(x)=-2x+a有兩個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是________.答案(-∞,1]解析方程f(x)=-2x+a有兩個(gè)不同的實(shí)數(shù)根,即方程f(x)+x=-x+a有兩個(gè)不同的根,等價(jià)于函數(shù)y=f(x)+x與函數(shù)y=-x+a的圖象有兩個(gè)不同的交點(diǎn).因?yàn)閒(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(2x-x,x≤0,,log2x-x,x>0,))所以y=f(x)+x=eq\b\lc\{\rc\(\a\vs4\al\co1(2x,x≤0,,log2x,x>0,))作出函數(shù)y=f(x)+x與y=-x+a的大致圖象如圖所示.?dāng)?shù)形結(jié)合可知,當(dāng)a≤1時(shí),兩個(gè)函數(shù)的圖象有兩個(gè)不同的交點(diǎn),即函數(shù)y=f(x)+2x-a有兩個(gè)不同的零點(diǎn).教師備選已知奇函數(shù)f(x)在x≥0時(shí)的圖象如圖所示,則不等式xf(x)<0的解集為________________.答案(-2,-1)∪(1,2)解析∵xf(x)<0,∴x和f(x)異號(hào),由于f(x)為奇函數(shù),補(bǔ)齊函數(shù)的圖象如圖.當(dāng)x∈(-2,-1)∪(0,1)∪(2,+∞)時(shí),f(x)>0,當(dāng)x∈(-∞,-2)∪(-1,0)∪(1,2)時(shí),f(x)<0,∴不等式xf(x)<0的解集為(-2,-1)∪(1,2).思維升華當(dāng)不等式問題不能用代數(shù)法求解或用代數(shù)法求解比較困難,但其對應(yīng)函數(shù)的圖象可作出時(shí),常將不等式問題轉(zhuǎn)化為圖象的位置關(guān)系問題,從而利用數(shù)形結(jié)合思想求解.跟蹤訓(xùn)練3(1)若函數(shù)f(x)=ax-x-a(a>0,且a≠1)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是________.答案(1,+∞)解析函數(shù)f(x)的零點(diǎn)的個(gè)數(shù)就是函數(shù)y=ax(a>0,且a≠1)與函數(shù)y=x+a的圖象的交點(diǎn)的個(gè)數(shù),如圖,當(dāng)a>1時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn);當(dāng)0<a<1時(shí),兩函數(shù)圖象有一個(gè)交點(diǎn).故a>1.(2)已知函數(shù)y=f(x)的圖象是圓x2+y2=2上的兩段弧,如圖所示,則不等式f(x)>f(-x)-2x的解集是________.答案(-1,0)∪(1,eq\r(2)]解析由圖象可知,函數(shù)f(x)為奇函數(shù),故原不等式可等價(jià)轉(zhuǎn)化為f(x)>-x.在同一平面直角坐標(biāo)系中分別畫出y=f(x)與y=-x的圖象,由圖象可知不等式的解集為(-1,0)∪(1,eq\r(2)].課時(shí)精練1.函數(shù)f(x)=eq\f(sin3x,ln|x|)的圖象大致是()答案A解析根據(jù)題意,函數(shù)f(x)=eq\f(sin3x,ln|x|),其定義域?yàn)閧x|x≠0且x≠±1},有f(-x)=-eq\f(sin3x,ln|x|)=-f(x),∴函數(shù)f(x)為奇函數(shù),排除B,D,又f
eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)))=eq\f(sin
\f(π,2),ln
\f(π,6))<0,所以排除C.2.為了得到函數(shù)y=lg
eq\f(x+3,10)的圖象,只需把函數(shù)y=lgx的圖象上所有的點(diǎn)()A.向左平移3個(gè)單位長度,再向上平移1個(gè)單位長度B.向右平移3個(gè)單位長度,再向上平移1個(gè)單位長度C.向左平移3個(gè)單位長度,再向下平移1個(gè)單位長度D.向右平移3個(gè)單位長度,再向下平移1個(gè)單位長度答案C解析∵y=lg
eq\f(x+3,10)=lg(x+3)-1,∴y=lgxeq\o(→,\s\up7(向左平移3個(gè)單位長度))y=lg(x+3)eq\o(→,\s\up7(向下平移1個(gè)單位長度))y=lg(x+3)-1.3.已知函數(shù)f(x)的圖象如圖所示,則函數(shù)f(x)的解析式可能是()A.f(x)=(4x-4-x)|x|B.f(x)=(4x-4-x)log2|x|C.f(x)=eq\f(4x+4-x,|x|)D.f(x)=(4x+4-x)log2|x|答案D解析由圖知,f(x)為偶函數(shù),故排除A,B;對于C,f(x)>0不符合圖象,故排除C;對于D,f(-x)=(4x+4-x)log2|x|=f(x)為偶函數(shù),且在區(qū)間(0,1)上,f(x)<0,符合題意.4.(2022·沈陽質(zhì)檢)若函數(shù)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(ax+b,x<-1,,lnx+a,x≥-1))的圖象如圖所示,則f(-3)等于()A.-eq\f(1,2)B.-eq\f(5,4)C.-1D.-2答案C解析∵f(-1)=0,∴l(xiāng)n(-1+a)=0,∴-1+a=1,∴a=2,又y=ax+b過點(diǎn)(-1,3),∴2×(-1)+b=3,∴b=5,∴f(-3)=-3a+b=-6+5=-1.5.(2022·長沙質(zhì)檢)已知圖①中的圖象對應(yīng)的函數(shù)為y=f(x),則圖②中的圖象對應(yīng)的函數(shù)為()圖①圖②A.y=f(|x|) B.y=f(-|x|)C.y=|f(x)| D.y=-f(|x|)答案B解析觀察函數(shù)圖象可得,②是由①保留y軸左側(cè)及y軸上的圖象,然后將y軸左側(cè)圖象翻折到右側(cè)所得,結(jié)合函數(shù)圖象的對稱變換可得變換后的函數(shù)的解析式為y=f(-|x|).6.下列函數(shù)中,其圖象與函數(shù)f(x)=lnx的圖象關(guān)于直線x=1對稱的是()A.y=ln(1-x) B.y=ln(2-x)C.y=ln(1+x) D.y=ln(2+x)答案B解析方法一設(shè)所求函數(shù)圖象上任一點(diǎn)的坐標(biāo)為(x,y),則其關(guān)于直線x=1的對稱點(diǎn)的坐標(biāo)為(2-x,y),由對稱性知點(diǎn)(2-x,y)在函數(shù)f(x)=lnx的圖象上,所以y=ln(2-x).方法二由題意知,對稱軸上的點(diǎn)(1,0)既在函數(shù)f(x)=lnx的圖象上也在所求函數(shù)的圖象上,代入選項(xiàng)中的函數(shù)解析式逐一檢驗(yàn),排除A,C,D.7.(多選)對于函數(shù)f(x)=lg(|x-2|+1),下列說法正確的是()A.f(x+2)是偶函數(shù)B.f(x+2)是奇函數(shù)C.f(x)在區(qū)間(-∞,2)上單調(diào)遞減,在區(qū)間(2,+∞)上單調(diào)遞增D.f(x)沒有最小值答案AC解析f(x+2)=lg(|x|+1)為偶函數(shù),A正確,B錯(cuò)誤.作出f(x)的圖象如圖所示,可知f(x)在(-∞,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增;由圖象可知函數(shù)存在最小值0,C正確,D錯(cuò)誤.
8.(多選)已知函數(shù)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2-3x,x≥0,,-e-x+1,x<0,))方程|f(x)-1|=2-m(m∈R),則下列判斷正確的是()A.函數(shù)f(x)的圖象關(guān)于直線x=eq\f(3,2)對稱B.函數(shù)f(x)在區(qū)間(3,+∞)上單調(diào)遞增C.當(dāng)m∈(1,2)時(shí),方程有2個(gè)不同的實(shí)數(shù)根D.當(dāng)m∈(-1,0)時(shí),方程有3個(gè)不同的實(shí)數(shù)根答案BC解析對于選項(xiàng)A,f(4)=4,f(-1)=1-e,顯然函數(shù)f(x)的圖象不關(guān)于直線x=eq\f(3,2)對稱;對于選項(xiàng)B,f(x)=x2-3x的圖象是開口向上的拋物線,所以函數(shù)f(x)在區(qū)間(3,+∞)上單調(diào)遞增,作出函數(shù)y=|f(x)-1|的圖象,如圖,對于選項(xiàng)C,當(dāng)m∈(1,2)時(shí),2-m∈(0,1),結(jié)合圖形可知方程|f(x)-1|=2-m(m∈R)有2個(gè)不同的實(shí)數(shù)根;對于選項(xiàng)D,當(dāng)m∈(-1,0)時(shí),2-m∈(2,3),結(jié)合圖形可知方程|f(x)-1|=2-m(m∈R)有4個(gè)不同的實(shí)數(shù)根.9.已知函數(shù)y=f(-x)的圖象過點(diǎn)(4,2),則函數(shù)y=f(x)的圖象一定過點(diǎn)________.答案(-4,2)解析y=f(-x)與y=f(x)的圖象關(guān)于y軸對稱,故y=f(x)的圖象一定過點(diǎn)(-4,2).10.若函數(shù)f(x)=eq\f(ax-2,x-1)的圖象關(guān)于點(diǎn)(1,1)對稱,則實(shí)數(shù)a=________.答案1解析f(x)=eq\f(ax-a+a-2,x-1)=a+eq\f(a-2,x-1),關(guān)于點(diǎn)(1,a)對稱,故a=1.
11.(2022·青島模擬)已知函數(shù)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2+2x-1,x≥0,,x2-2x-1,x<0,))則對任意x1,x2∈R,若x2>0>x1>-x2,則f(x1)與f(x2)的大小關(guān)系是________.答案f(x1)<f(x2)解析作出函數(shù)f(x)的圖象(圖略),由圖知f(x)為偶函數(shù),且在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,∵0>x1>-x2,∴f(x1)<f(-x2)=f(x2).12.已知函數(shù)f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)k的取值范圍是__________.答案eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),1))解析先作出函數(shù)f(x)=|x-2|+1的圖象,如圖所示,當(dāng)直線g(x)=kx與直線AB平行時(shí)斜率為1,當(dāng)直線g(x)=kx過A點(diǎn)時(shí)斜率為eq\f(1,2),故f(x)=g(x)有兩個(gè)不相等的實(shí)根時(shí),k的取值范圍為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),1)).13.若函數(shù)f(x)=(emx-n)2的大致圖象如圖所示,則()A.m>0,0<n<1 B.m>0,n>1C.m<0,0<n<1 D.m<0,n>1答案B解析令f(x)=0,得emx=n,即mx=lnn,解得x=eq\f(1,m)lnn,由圖象知x=eq\f(1,m)lnn>0,當(dāng)m>0時(shí),n>1,當(dāng)m<0時(shí),0<n<1,故排除AD,當(dāng)m<0時(shí),易知y=emx是減函數(shù),當(dāng)x→+∞時(shí),y→0,f(x)→n2,故排除C.14.(2022·濟(jì)南模擬)若平面直角坐標(biāo)系內(nèi)A,B兩點(diǎn)滿足:(1)點(diǎn)A,B都在f(x)的圖象上;(2)點(diǎn)A,B關(guān)于原點(diǎn)對稱,則稱點(diǎn)對(A,B)是函數(shù)f(x)的一個(gè)“和諧點(diǎn)對”,(A,B)與(B,A)可看作一個(gè)“和諧點(diǎn)對”.已知函數(shù)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2+2x,x<0,,\f(2,ex),x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年海鮮產(chǎn)品綠色包裝推廣合同3篇
- 二零二五年度現(xiàn)代化養(yǎng)殖基地租賃服務(wù)協(xié)議4篇
- 食堂裝修工程2025年度施工合同糾紛解決協(xié)議2篇
- 2025版錨具出口貿(mào)易合同范本及操作指南4篇
- 2025年物業(yè)公司綠化養(yǎng)護(hù)專業(yè)承包合同樣本3篇
- 二零二五年度白酒二批經(jīng)銷商線上線下全渠道合作協(xié)議3篇
- 二零二五年度古建筑門修復(fù)與安裝合同4篇
- 二零二五版鋁礦資源開發(fā)環(huán)境保護(hù)責(zé)任合同4篇
- 二零二五版機(jī)床租賃與購買選擇合同范本3篇
- 2025年度城市街道綠化帶綠植花卉租賃養(yǎng)護(hù)協(xié)議4篇
- 第1本書出體旅程journeys out of the body精教版2003版
- 臺(tái)資企業(yè)A股上市相關(guān)資料
- 電 梯 工 程 預(yù) 算 書
- 羅盤超高清圖
- 參會(huì)嘉賓簽到表
- 機(jī)械車間員工績效考核表
- 2.48低危胸痛患者后繼治療評估流程圖
- 人力資源管理之績效考核 一、什么是績效 所謂績效簡單的講就是對
- 山東省醫(yī)院目錄
- 云南地方本科高校部分基礎(chǔ)研究
- 廢品管理流程圖
評論
0/150
提交評論