中考數(shù)學(xué)一輪復(fù)習(xí)題型歸納專練專題14 與圓有關(guān)的性質(zhì)(解析版)_第1頁
中考數(shù)學(xué)一輪復(fù)習(xí)題型歸納專練專題14 與圓有關(guān)的性質(zhì)(解析版)_第2頁
中考數(shù)學(xué)一輪復(fù)習(xí)題型歸納專練專題14 與圓有關(guān)的性質(zhì)(解析版)_第3頁
中考數(shù)學(xué)一輪復(fù)習(xí)題型歸納專練專題14 與圓有關(guān)的性質(zhì)(解析版)_第4頁
中考數(shù)學(xué)一輪復(fù)習(xí)題型歸納專練專題14 與圓有關(guān)的性質(zhì)(解析版)_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題14與圓有關(guān)的性質(zhì)題型分析題型分析題型演練題型演練題型一圓的基本概念辨析題型一圓的基本概念辨析1.下列說法中,正確的是()A.過圓心的直線是圓的直徑B.直徑是圓中最長(zhǎng)的弦C.相等長(zhǎng)度的兩條弧是等弧D.頂點(diǎn)在圓上的角是圓周角【答案】B【分析】根據(jù)直徑,弦,等弧,圓周角的定義,逐一判斷即可解答.【詳解】解:A、過圓心的弦是圓的直徑,故此選項(xiàng)不符合題意;B、直徑是圓中最長(zhǎng)的弦,故此選項(xiàng)符合題意;C、在同圓或等圓中,能夠互相重合的弧叫做等弧,故此選項(xiàng)不符合題意;D、頂點(diǎn)在圓上,兩邊分別與圓還有另一個(gè)交點(diǎn)的角是圓周角,故此選項(xiàng)不符合題意;故選:B.2.如圖,圖中⊙O的弦共有(

)A.1條 B.2條 C.3條 D.4條【答案】C【分析】根據(jù)弦的定義即可求解.

連接圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫做直徑,直徑是一個(gè)圓里最長(zhǎng)的弦.【詳解】解:圖中有弦SKIPIF1<0共3條,故選C.3.下列說法正確的是(

)A.弧長(zhǎng)相等的弧是等弧 B.直徑是最長(zhǎng)的弦C.三點(diǎn)確定一個(gè)圓 D.平分弦的直徑垂直于弦【答案】B【分析】根據(jù)等弧的概念、弦的概念、確定圓的條件以及垂徑定理判斷即可.【詳解】A、能夠重合的弧是等弧,弧長(zhǎng)相等的弧不一定是等弧,故本選項(xiàng)說法錯(cuò)誤,不符合題意;B、直徑是最長(zhǎng)的弦,本選項(xiàng)說法正確,符合題意;C、不在同一直線上的三點(diǎn)確定一個(gè)圓,故本選項(xiàng)說法錯(cuò)誤,不符合題意;D、平分弦(不是直徑的弦)的直徑垂直于弦,故本選項(xiàng)說法錯(cuò)誤,不符合題意;故選:B.4.如圖在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,M是SKIPIF1<0邊的中點(diǎn),N是SKIPIF1<0邊上的動(dòng)點(diǎn),將SKIPIF1<0沿SKIPIF1<0所在直線折疊,得到SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0的最小值是________.【答案】SKIPIF1<0【分析】根據(jù)矩形折疊的性質(zhì)得到SKIPIF1<0,確定出當(dāng)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上時(shí),SKIPIF1<0有最小值,再利用勾股定理計(jì)算即可.【詳解】解:∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,SKIPIF1<0.∵M(jìn)是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0.∵將SKIPIF1<0沿SKIPIF1<0所在直線折疊,∴SKIPIF1<0,∴點(diǎn)SKIPIF1<0在以點(diǎn)M為圓心,SKIPIF1<0為半徑的圓上,∴如圖,當(dāng)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上時(shí),SKIPIF1<0有最小值,∵SKIPIF1<0,∴SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.5.某校計(jì)劃在校園內(nèi)修建一座周長(zhǎng)為20m的花壇,同學(xué)們?cè)O(shè)計(jì)出正三角形,正方形和圓三種圖案,通過計(jì)算說明使花壇面積最大的圖案是_______(填圖形).【答案】圓【分析】分別求出正三角形,正方形和圓三種圖案的面積,即可求解.【詳解】解:當(dāng)設(shè)計(jì)成正三角形,則邊長(zhǎng)是SKIPIF1<0,則面積是SKIPIF1<0;當(dāng)設(shè)計(jì)成正方形時(shí),邊長(zhǎng)是5m,則面積是SKIPIF1<0;當(dāng)設(shè)計(jì)成圓時(shí),半徑是SKIPIF1<0,則面積是SKIPIF1<0.∵這三個(gè)數(shù)中SKIPIF1<0最大,∴使花壇面積最大的圖案是圓.故答案為:圓.6.如圖,在SKIPIF1<0中,點(diǎn)A、B在圓上,且SKIPIF1<0,則SKIPIF1<0的度數(shù)為_______°.【答案】60【分析】連接SKIPIF1<0,證明SKIPIF1<0是等邊三角形,可得結(jié)果.【詳解】解:連接SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∴SKIPIF1<0,故答案為:60.7.如圖,SKIPIF1<0是SKIPIF1<0的直徑,C是SKIPIF1<0延長(zhǎng)線上一點(diǎn),點(diǎn)D在SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0的延長(zhǎng)線交SKIPIF1<0于點(diǎn)E,若SKIPIF1<0,試求SKIPIF1<0的度數(shù).【答案】SKIPIF1<0.【分析】利用半徑相等和等腰三角形的性質(zhì)以及三角形的外角性質(zhì)得到SKIPIF1<0,即可解決問題.【詳解】解:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.8.如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,SKIPIF1<0的頂點(diǎn)SKIPIF1<0,SKIPIF1<0均落在格點(diǎn)上,點(diǎn)SKIPIF1<0在網(wǎng)格線上.(1)線段SKIPIF1<0的長(zhǎng)等于______;(2)以SKIPIF1<0為直徑的半圓的圓心為SKIPIF1<0,在圓上找一點(diǎn)SKIPIF1<0,使SKIPIF1<0平分SKIPIF1<0請(qǐng)用無刻度的直尺作圖;(3)以SKIPIF1<0為直徑的半圓的圓心為SKIPIF1<0,在線段SKIPIF1<0上有一點(diǎn)SKIPIF1<0,滿足SKIPIF1<0.請(qǐng)用無刻度的直尺,在如圖所示的網(wǎng)格中,畫出點(diǎn)SKIPIF1<0.【答案】(1)SKIPIF1<0(2)畫圖見解析(3)畫圖見解析【分析】(1)直接利用勾股定理進(jìn)行計(jì)算即可;(2)如圖,取SKIPIF1<0與網(wǎng)格線的交點(diǎn)D,連接SKIPIF1<0并延長(zhǎng)SKIPIF1<0交SKIPIF1<0于點(diǎn)E,則E即為所求,(3)記SKIPIF1<0交SKIPIF1<0于點(diǎn)G,連接SKIPIF1<0,延長(zhǎng)SKIPIF1<0交SKIPIF1<0的延長(zhǎng)線于F,連接SKIPIF1<0延長(zhǎng)SKIPIF1<0交SKIPIF1<0于點(diǎn)P,則點(diǎn)P即為所求.【詳解】(1)解:由勾股定理可得:SKIPIF1<0.(2)如圖,取SKIPIF1<0與網(wǎng)格線的交點(diǎn)D,連接SKIPIF1<0并延長(zhǎng)SKIPIF1<0交SKIPIF1<0于點(diǎn)E,則E即為所求,理由如下:由格線SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0為SKIPIF1<0的中位線,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0平分SKIPIF1<0.(3)記SKIPIF1<0交SKIPIF1<0于點(diǎn)G,連接SKIPIF1<0,延長(zhǎng)SKIPIF1<0交SKIPIF1<0的延長(zhǎng)線于F,連接SKIPIF1<0延長(zhǎng)SKIPIF1<0交SKIPIF1<0于點(diǎn)P,則點(diǎn)P即為所求.由SKIPIF1<0,SKIPIF1<0,同理可得:SKIPIF1<0為SKIPIF1<0的中位線,∴SKIPIF1<0,而SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0是SKIPIF1<0的垂直平分線,∴SKIPIF1<0,SKIPIF1<0與SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,則點(diǎn)P即為所求.題型二垂徑定理的應(yīng)用題型二垂徑定理的應(yīng)用9.如圖SKIPIF1<0的周長(zhǎng)是SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的弦,SKIPIF1<0,垂足為M,若SKIPIF1<0,則SKIPIF1<0的長(zhǎng)為(

)A.8 B.12 C.15 D.16【答案】D【分析】連接SKIPIF1<0,先根據(jù)SKIPIF1<0的周長(zhǎng)是SKIPIF1<0,可求得半徑為SKIPIF1<0,根據(jù)SKIPIF1<0可求出SKIPIF1<0的長(zhǎng),再根據(jù)勾股定理可求出SKIPIF1<0的長(zhǎng),根據(jù)垂徑定理進(jìn)而得出結(jié)論.【詳解】解:如圖:連接SKIPIF1<0,SKIPIF1<0的周長(zhǎng)是SKIPIF1<0,SKIPIF1<0的半徑SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的弦,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:D.10.如圖,在SKIPIF1<0中,弦SKIPIF1<0的長(zhǎng)為SKIPIF1<0,圓心到SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0的半徑為(

)A.4 B.5 C.3 D.7【答案】B【分析】由垂徑定理可得SKIPIF1<0的長(zhǎng),利用勾股定理即可求出SKIPIF1<0的長(zhǎng),即為圓的半徑.【詳解】解:作SKIPIF1<0于E,連接SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,故選:B.11.在SKIPIF1<0中,SKIPIF1<0是直徑,SKIPIF1<0是弦,SKIPIF1<0,將圓沿著SKIPIF1<0翻折,使弧SKIPIF1<0與直徑SKIPIF1<0相交于點(diǎn)E和F,且SKIPIF1<0,SKIPIF1<0的長(zhǎng)為_____.【答案】SKIPIF1<0【分析】設(shè)翻折前與SKIPIF1<0對(duì)應(yīng)的弦為SKIPIF1<0,過圓心O作SKIPIF1<0于點(diǎn)M,交SKIPIF1<0于點(diǎn)N,連接SKIPIF1<0、SKIPIF1<0,根據(jù)垂徑定理以及翻折的性質(zhì),勾股定理即可求解.【詳解】解:∵SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0,∴SKIPIF1<0,設(shè)翻折前與SKIPIF1<0對(duì)應(yīng)的弦為SKIPIF1<0,過圓心O作SKIPIF1<0于點(diǎn)M,交SKIPIF1<0于點(diǎn)N,連接SKIPIF1<0、SKIPIF1<0,如圖:則SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由翻折可知:SKIPIF1<0,在SKIPIF1<0中,由勾股定理得SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,由勾股定理得,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0的長(zhǎng)為SKIPIF1<0.故答案為:SKIPIF1<0.12.如圖是一座圓弧型拱橋的截面示意圖,若橋面跨度SKIPIF1<0米,拱高SKIPIF1<0米(SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為弧SKIPIF1<0的中點(diǎn)).則橋拱所在圓的半徑為_____________米.【答案】26【分析】根據(jù)垂徑定理得SKIPIF1<0,設(shè)圓的半徑為R,根據(jù)勾股定理列方程求出R即可.【詳解】解:如圖,橋拱所在圓的圓心為O,半徑為R,連接SKIPIF1<0∵SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為弧SKIPIF1<0的中點(diǎn),∴SKIPIF1<0三點(diǎn)共線,且SKIPIF1<0SKIPIF1<0,SKIPIF1<0在RtSKIPIF1<0中,根據(jù)勾股定理得SKIPIF1<0

SKIPIF1<0解得SKIPIF1<0故答案為:2613.如圖,在SKIPIF1<0中,SKIPIF1<0.(1)尺規(guī)作圖:作SKIPIF1<0的外接圓,圓心為O(保留作圖痕跡);(2)求SKIPIF1<0外接圓的半徑.【答案】(1)答案見解析;(2)SKIPIF1<0【分析】(1)首先畫出SKIPIF1<0和SKIPIF1<0的垂直平分線,兩線交于點(diǎn)O,以O(shè)為圓心,SKIPIF1<0長(zhǎng)為半徑畫圓即可;(2)過A作SKIPIF1<0,連接SKIPIF1<0,設(shè)SKIPIF1<0的外接圓的半徑SKIPIF1<0,首先利用勾股定理計(jì)算出SKIPIF1<0的長(zhǎng),然后再利用勾股定理計(jì)算出r即可.【詳解】(1)解:如下圖,畫出SKIPIF1<0和SKIPIF1<0的垂直平分線,兩線交于點(diǎn)O,以O(shè)為圓心,SKIPIF1<0長(zhǎng)為半徑畫圓,SKIPIF1<0即為所求;(2)如上圖,過A作SKIPIF1<0,連接SKIPIF1<0,設(shè)SKIPIF1<0的外接圓的半徑SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0.14.已知:SKIPIF1<0的半徑為5,點(diǎn)SKIPIF1<0在直徑SKIPIF1<0上,過點(diǎn)SKIPIF1<0作SKIPIF1<0的弦SKIPIF1<0,過點(diǎn)SKIPIF1<0作直線SKIPIF1<0的垂線SKIPIF1<0,垂足為點(diǎn)SKIPIF1<0.(1)如圖1,當(dāng)SKIPIF1<0時(shí),求線段SKIPIF1<0的長(zhǎng);(2)當(dāng)點(diǎn)SKIPIF1<0是線段SKIPIF1<0的中點(diǎn)時(shí),求SKIPIF1<0的長(zhǎng);(3)如果SKIPIF1<0,求線段SKIPIF1<0的長(zhǎng).【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0或SKIPIF1<0【分析】(1)連接SKIPIF1<0,利用垂徑定理和勾股定理解答即可;(2)連接SKIPIF1<0,利用垂徑定理和線段垂直平分線的性質(zhì)得到SKIPIF1<0為等邊三角形,利用等邊三角形的性質(zhì)和直角三角形的性質(zhì)解答即可;(3)利用分類討論的思想方法分∶①當(dāng)點(diǎn)F在線段SKIPIF1<0上時(shí),連接SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,證明SKIPIF1<0得SKIPIF1<0,即可求得結(jié)論;②當(dāng)點(diǎn)F在線段SKIPIF1<0的延長(zhǎng)線上時(shí),連接SKIPIF1<0,同理解答即可.【詳解】(1)解:連接SKIPIF1<0,如圖,∵SKIPIF1<0的半徑為5,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0;(2)解:連接SKIPIF1<0,如圖,∵點(diǎn)F是線段SKIPIF1<0的中點(diǎn)時(shí),∴SKIPIF1<0經(jīng)過點(diǎn)圓心O,SKIPIF1<0,SKIPIF1<0垂直平分SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,AB是直徑,∴SKIPIF1<0是SKIPIF1<0的垂直平分線,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0為等邊三角形,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(3)解:①當(dāng)點(diǎn)F在線段SKIPIF1<0上時(shí),連接SKIPIF1<0,如圖,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,AB是直徑,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0(不合題意,舍去)或SKIPIF1<0,∴SKIPIF1<0;②當(dāng)點(diǎn)F在線段SKIPIF1<0的延長(zhǎng)線上時(shí),連接SKIPIF1<0,如圖,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,AB是直徑,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0(不合題意,舍去)或SKIPIF1<0,綜上,如果SKIPIF1<0,線段SKIPIF1<0的長(zhǎng)為SKIPIF1<0或SKIPIF1<0.題型三利用弧、弦、圓心角的關(guān)系求解題型三利用弧、弦、圓心角的關(guān)系求解15.如圖,在兩個(gè)同心圓中,SKIPIF1<0為SKIPIF1<0,則SKIPIF1<0的度數(shù)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求出SKIPIF1<0,可得結(jié)論.【詳解】解:∵SKIPIF1<0的度數(shù)為SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的度數(shù)為SKIPIF1<0,故選D.16.下列說法中正確的是(

)A.經(jīng)過三點(diǎn)一定可以作一個(gè)圓 B.相等的圓心角所對(duì)的弧也相等C.圓是軸對(duì)稱圖形,每一條直徑都是它的對(duì)稱軸 D.等弧所對(duì)的圓周角相等【答案】D【分析】根據(jù)確定一個(gè)圓的條件,圓周角定理,圓心角定理,圓的對(duì)稱軸的知識(shí)即可判斷正誤.【詳解】A.經(jīng)過不在同一直線上的三點(diǎn)一定可以作一個(gè)圓,A選項(xiàng)錯(cuò)誤,所以A選項(xiàng)不符合題意;B.在同圓或等圓中,相等的圓心角所對(duì)的弧也相等,B選項(xiàng)錯(cuò)誤,所以B選項(xiàng)不符合題意;C.圓是軸對(duì)稱圖形,每一條直徑所在的直線都是它的對(duì)稱軸,C選項(xiàng)錯(cuò)誤,所以C選項(xiàng)不符合題意;D.等弧所對(duì)的圓周角相等,D選項(xiàng)正確,所以D選項(xiàng)符合題意.故選:D17.若一個(gè)圓的半徑是6cm,則90度的圓心角所對(duì)的弦的長(zhǎng)度為_____.【答案】SKIPIF1<0【分析】根據(jù)題意得到等腰直角三角形,根據(jù)勾股定理計(jì)算即可.【詳解】解:如下圖,SKIPIF1<0圓心角SKIPIF1<0,SKIPIF1<0SKIPIF1<0是等腰直角三角形,SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,作SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0弧所對(duì)的弦長(zhǎng)SKIPIF1<0,故答案為:SKIPIF1<018.如圖,點(diǎn)A在半圓O上,SKIPIF1<0是直徑,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的長(zhǎng)為__.【答案】SKIPIF1<0【分析】連接SKIPIF1<0,由圓心角,弦,弧的關(guān)系可得SKIPIF1<0,結(jié)合等腰直角三角形的性質(zhì)可求解SKIPIF1<0的長(zhǎng),進(jìn)而可求解SKIPIF1<0的長(zhǎng).【詳解】解:連接SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0是直徑,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故答案為:SKIPIF1<0.19.如圖,在SKIPIF1<0中,SKIPIF1<0,以點(diǎn)C為圓心,SKIPIF1<0為半徑的圓交SKIPIF1<0于點(diǎn)D,交SKIPIF1<0于點(diǎn)E,求SKIPIF1<0的度數(shù).【答案】SKIPIF1<0【分析】連接SKIPIF1<0,先根據(jù)三角形內(nèi)角和計(jì)算出SKIPIF1<0,再根據(jù)等腰三角形的性質(zhì)由SKIPIF1<0得到SKIPIF1<0,然后再利用三角形內(nèi)角和計(jì)算出SKIPIF1<0,再根據(jù)直角的性質(zhì)求出SKIPIF1<0,最后根據(jù)圓心角的度數(shù)等于它所對(duì)的弧的度數(shù)求解.【詳解】解:如下圖,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的度數(shù)為SKIPIF1<0.20.如圖,在SKIPIF1<0的內(nèi)接四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0是四邊形SKIPIF1<0的一個(gè)外角.求證:SKIPIF1<0.【答案】見解析【分析】根據(jù)弧與弦的關(guān)系,得出SKIPIF1<0,根據(jù)同弧所對(duì)的圓周角相等得出SKIPIF1<0,SKIPIF1<0是四邊形SKIPIF1<0的一個(gè)外角,得出SKIPIF1<0,進(jìn)而得出SKIPIF1<0,根據(jù)SKIPIF1<0,即可得證.【詳解】證明:SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是圓內(nèi)接四邊形,SKIPIF1<0,SKIPIF1<0,由圓周角定理得,SKIPIF1<0,SKIPIF1<0.題型四利用弧、弦、圓心角的關(guān)系證明題型四利用弧、弦、圓心角的關(guān)系證明21.下列命題中,正確的是(

)①同弧所對(duì)的圓周角相等;②相等的圓心角,所對(duì)的弧也相等;③兩條弦相等,它們所對(duì)的弧也相等;④在等圓中,圓心角不等,所對(duì)的弦也不等A.①② B.①③ C.①④ D.①②③④【答案】C【分析】根據(jù)所學(xué)定理和推論可知①④正確,②③錯(cuò)誤.【詳解】解:①根據(jù)圓心角的定義知,頂點(diǎn)在圓心的角是圓心角;故①正確.②缺少條件,必須是在同圓或等圓中,相等的圓心角所對(duì)的弧才相等;故錯(cuò)誤.③在圓中,一條弦對(duì)著兩條弧,所以兩條弦相等,它們所對(duì)的弧不一定相等;故錯(cuò)誤.④根據(jù)圓心角、弦、弧之間的關(guān)系定理,在等圓中,若圓心角相等,則弦相等,所以圓心角不等,弦也不等;故④正確.故選:C.22.如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則下列結(jié)論錯(cuò)誤的是(

)A.弦SKIPIF1<0的長(zhǎng)等于圓內(nèi)接正六邊形的邊長(zhǎng) B.弦SKIPIF1<0的長(zhǎng)等于圓內(nèi)接正十二邊形的邊長(zhǎng)C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)正多邊形的性質(zhì)和圓的相關(guān)概念對(duì)四個(gè)選項(xiàng)逐一進(jìn)行分析.【詳解】解:A.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為等邊三角形,SKIPIF1<0,以SKIPIF1<0為一邊可構(gòu)成正六邊形,故結(jié)論正確,該選項(xiàng)不符合題意;B.因?yàn)镾KIPIF1<0,根據(jù)垂徑定理可知,SKIPIF1<0;再根據(jù)A中結(jié)論,弦SKIPIF1<0的長(zhǎng)等于圓內(nèi)接正十二邊形的邊長(zhǎng),故結(jié)論正確,該選項(xiàng)不符合題意;C.根據(jù)垂徑定理,SKIPIF1<0,故結(jié)論正確,該選項(xiàng)不符合題意;D.根據(jù)圓周角定理,圓周角的度數(shù)等于它所對(duì)的圓心角的度數(shù)的一半,SKIPIF1<0,故結(jié)論錯(cuò)誤,該選項(xiàng)符合題意.故選:D.23.如圖,點(diǎn)A,B,C,D,E都是SKIPIF1<0上的點(diǎn),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0______°.【答案】116【分析】連接SKIPIF1<0、SKIPIF1<0,根據(jù)圓內(nèi)接四邊形的性質(zhì)求出SKIPIF1<0,根據(jù)圓心角、弧、弦之間的關(guān)系定理求出SKIPIF1<0,根據(jù)圓內(nèi)接四邊形的性質(zhì)計(jì)算,得到答案.【詳解】解:連接SKIPIF1<0、SKIPIF1<0,∵點(diǎn)A、C、D、E都是SKIPIF1<0上的點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵點(diǎn)A、B、C、E都是⊙O上的點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,故答案為:116.24.如圖,SKIPIF1<0的兩條弦SKIPIF1<0、SKIPIF1<0互相垂直,垂足為SKIPIF1<0,且SKIPIF1<0,已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的半徑為__.【答案】SKIPIF1<0【分析】過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,由SKIPIF1<0推出SKIPIF1<0,根據(jù)正方形的判定推出SKIPIF1<0是正方形,再求出SKIPIF1<0的長(zhǎng),最后在SKIPIF1<0中,根據(jù)勾股定理即可求出SKIPIF1<0.【詳解】解:過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0過圓心SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是正方形,SKIPIF1<0,在SKIPIF1<0中,由勾股定理得:SKIPIF1<0.故答案為:SKIPIF1<0.25.如圖,在SKIPIF1<0中,弦SKIPIF1<0相交于點(diǎn)P,且SKIPIF1<0,求證:SKIPIF1<0.【答案】見解析【分析】根據(jù)SKIPIF1<0,得到SKIPIF1<0,推出SKIPIF1<0,得到SKIPIF1<0,即可得到結(jié)論.【詳解】解:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.26.如圖,SKIPIF1<0是SKIPIF1<0的外接圓,SKIPIF1<0平分SKIPIF1<0,交SKIPIF1<0于點(diǎn)F,交SKIPIF1<0于點(diǎn)D,SKIPIF1<0平分SKIPIF1<0,交SKIPIF1<0于點(diǎn)E,連接SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若點(diǎn)A是SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0.【答案】(1)見解析(2)見解析【分析】(1)根據(jù)同弧所對(duì)的圓周角相等,得到SKIPIF1<0,再利用角平分線平分角以及三角形外角的性質(zhì),得到SKIPIF1<0,即可得證;(2)根據(jù)等弧對(duì)等弦,得到SKIPIF1<0,證明SKIPIF1<0,得到SKIPIF1<0,再根據(jù)等角對(duì)等邊,得到SKIPIF1<0,即可得到SKIPIF1<0.【詳解】(1)證明:如圖∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,即SKIPIF1<0;(2)證明:∵點(diǎn)A是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.題型五圓心角的概念辨析題型五圓心角的概念辨析27.下列說法正確的是()A.如果一個(gè)角的一邊過圓心,則這個(gè)角就是圓心角B.圓心角α的取值范圍是SKIPIF1<0C.圓心角就是頂點(diǎn)在圓心,且角的兩邊是兩半徑所在的射線的角D.圓心角就是在圓心的角【答案】C【分析】由圓心角的定義:圓心角就是頂點(diǎn)在圓心,且角的兩邊是兩半徑所在的射線的角,即可求得答案.【詳解】解:∵圓心角就是頂點(diǎn)在圓心,且角的兩邊是兩半徑所在的射線的角,∴A、D錯(cuò)誤,C正確;∵圓心角α的取值范圍是SKIPIF1<0,∴B錯(cuò)誤.故選:C.28.如圖SKIPIF1<0中,SKIPIF1<0,以C為圓心,SKIPIF1<0為半徑的圓交SKIPIF1<0于點(diǎn)D,則SKIPIF1<0的度數(shù)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】如圖,連接SKIPIF1<0先求解SKIPIF1<0再利用圓心角與弧之間的關(guān)系可得答案.【詳解】解:如圖,連接SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0的度數(shù)為:SKIPIF1<0故選B.29.如圖,在SKIPIF1<0中,劣弧SKIPIF1<0的度數(shù)為SKIPIF1<0,則圓心角SKIPIF1<0_________SKIPIF1<0.【答案】SKIPIF1<0【分析】SKIPIF1<0的度數(shù)即為SKIPIF1<0所對(duì)圓心角的度數(shù);【詳解】解:SKIPIF1<0的度數(shù)即為SKIPIF1<0所對(duì)圓心角的度數(shù);∴SKIPIF1<0故答案為:SKIPIF1<030.如圖,SKIPIF1<0是SKIPIF1<0的弦,SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0【分析】根據(jù)同圓中半徑相等,可得SKIPIF1<0,根據(jù)等邊對(duì)等角以及三角形內(nèi)角和定理可得結(jié)果.【詳解】解:∵SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,故答案為:SKIPIF1<0.31.如圖,SKIPIF1<0、SKIPIF1<0是⊙O的直徑,弦SKIPIF1<0,弧SKIPIF1<0的度數(shù)為SKIPIF1<0,求SKIPIF1<0的度數(shù).【答案】SKIPIF1<0【分析】連接SKIPIF1<0,由弧SKIPIF1<0的度數(shù)為SKIPIF1<0,得到SKIPIF1<0,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可求出SKIPIF1<0,再由SKIPIF1<0,即可得到SKIPIF1<0.【詳解】解:連接SKIPIF1<0,如圖,∵弧SKIPIF1<0的度數(shù)為SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵弦SKIPIF1<0,∴SKIPIF1<0.32.如圖所示,以O(shè)為圓心的兩個(gè)同心圓,小圓半徑為1,大圓半徑為SKIPIF1<0,用6條直徑將兩個(gè)圓12等分,點(diǎn)A在大圓等分點(diǎn)上,點(diǎn)B在小圓等分點(diǎn)上,且SKIPIF1<0.(1)將SKIPIF1<0繞點(diǎn)O順時(shí)針旋轉(zhuǎn)SKIPIF1<0得SKIPIF1<0,請(qǐng)?jiān)趫D甲中畫出SKIPIF1<0.(2)將SKIPIF1<0繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得SKIPIF1<0,使邊SKIPIF1<0第一次經(jīng)過點(diǎn)B,請(qǐng)?jiān)趫D乙中畫出SKIPIF1<0.【答案】(1)見解析;(2)見解析【分析】(1)由于圓被12等分,可得每小格為30°,則120°為4小格,據(jù)此畫圖即可;(2)計(jì)算出AB=2,根據(jù)SKIPIF1<0經(jīng)過點(diǎn)B,可知點(diǎn)B為A2B2中點(diǎn),從而得到旋轉(zhuǎn)角,畫出圖形即可.【詳解】解:(1)如圖所示,即為所求.(2)AB=SKIPIF1<0,如圖所示,即為所求.題型六圓周角的概念辨析題型六圓周角的概念辨析33.下列圖形中的角是圓周角的是(

)A. B. C. D.【答案】C【分析】根據(jù)圓周角的定義(角的頂點(diǎn)在圓上,并且角的兩邊與圓相交的角叫做圓周角)判斷即可.【詳解】解:根據(jù)圓周角的定義可知,選項(xiàng)C中的角是圓周角.故選:C.34.如圖,四個(gè)邊長(zhǎng)為1的小正方形拼成一個(gè)大正方形,A、B、O是小正方形頂點(diǎn),⊙O的半徑為1,P是⊙O上的點(diǎn),且位于右上方的小正方形內(nèi),則sin∠APB等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】B【分析】由圖,SKIPIF1<0與SKIPIF1<0為同弧所對(duì)的角,根據(jù)同圓內(nèi),同弧所對(duì)的圓周角與圓心角的關(guān)系即可求得答案.【詳解】解:SKIPIF1<0A、B、O是小正方形頂點(diǎn),SKIPIF1<0,SKIPIF1<0(同圓內(nèi),同弧所對(duì)的圓周角等于圓心角的一半),SKIPIF1<0,故選:B.35.如圖,△ABC內(nèi)接于圓,弦BD交AC于點(diǎn)P,連接AD.下列角中,SKIPIF1<0所對(duì)圓周角的是(

)A.∠APB B.∠ABD C.∠ACB D.∠BAC【答案】C【分析】根據(jù)題意可直接進(jìn)行求解.【詳解】解:由圖可知:SKIPIF1<0所對(duì)圓周角的是∠ACB或∠ADB,故選C.36.已知點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0在圓SKIPIF1<0上,且SKIPIF1<0切圓SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0于點(diǎn)SKIPIF1<0,對(duì)于下列說法:①圓上SKIPIF1<0是優(yōu)?。虎趫A上SKIPIF1<0是優(yōu)?。虎劬€段SKIPIF1<0是弦;④SKIPIF1<0和SKIPIF1<0都是圓周角;⑤SKIPIF1<0是圓心角,其中正確的說法是________.【答案】①②③⑤【分析】根據(jù)優(yōu)弧的定義,弦的定義,圓周角的定義,圓心角的定義逐項(xiàng)分析判斷即可【詳解】解:SKIPIF1<0,SKIPIF1<0都是大于半圓的弧,故①②正確,SKIPIF1<0在圓上,則線段SKIPIF1<0是弦;故③正確;SKIPIF1<0SKIPIF1<0都在圓上,SKIPIF1<0SKIPIF1<0是圓周角而SKIPIF1<0點(diǎn)不在圓上,則SKIPIF1<0不是圓周角故④不正確;SKIPIF1<0SKIPIF1<0是圓心,SKIPIF1<0在圓上SKIPIF1<0SKIPIF1<0是圓心角故⑤正確故正確的有:①②③⑤故答案為:①②③⑤37.如圖,點(diǎn)SKIPIF1<0均在圓上,則圖中有________個(gè)圓周角.【答案】8【分析】根據(jù)圓周角的定義,圓周角的頂點(diǎn)必在圓周上,據(jù)此可把頂點(diǎn)分別為A、B、C、D的圓周角數(shù)出來,即可得到答案.【詳解】解:以點(diǎn)SKIPIF1<0為頂點(diǎn)的圓周角各有3個(gè),以點(diǎn)SKIPIF1<0為頂點(diǎn)的圓周角各有1個(gè),共有8個(gè)圓周角.故答案為8.題型七圓周角的性質(zhì)應(yīng)用題型七圓周角的性質(zhì)應(yīng)用38.如圖,四邊形SKIPIF1<0內(nèi)接于SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的大小為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)同弧所對(duì)的圓周角是圓心角的一半,以及圓內(nèi)接四邊形的內(nèi)對(duì)角互補(bǔ),進(jìn)行求解即可.【詳解】解:四邊形ABCD內(nèi)接于SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0;故選C.39.如圖,已知四邊形SKIPIF1<0是SKIPIF1<0的內(nèi)接四邊形,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,下列命題錯(cuò)誤的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.圖中全等的三角形共有2對(duì)【答案】D【分析】根據(jù)等弧對(duì)等角、證SKIPIF1<0,利用全等的性質(zhì)得到SKIPIF1<0,SKIPIF1<0,結(jié)合已知利用勾股定理逆定理證SKIPIF1<0,然后利用等腰三角形和三角形面積公式進(jìn)行分析即可.【詳解】解:四邊形SKIPIF1<0是SKIPIF1<0的內(nèi)接四邊形SKIPIF1<0即SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0故A正確,不符合題意;SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故B正確,不符合題意;SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故C正確,不符合題意;圖中全等三角形有:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,共有3對(duì)故D錯(cuò)誤,符合題意;故選:D40.如圖,點(diǎn)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上,連結(jié)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,若點(diǎn)SKIPIF1<0是圓上異于SKIPIF1<0,SKIPIF1<0的另一點(diǎn),則SKIPIF1<0___________.【答案】SKIPIF1<0或SKIPIF1<0【分析】分別從點(diǎn)SKIPIF1<0在優(yōu)弧SKIPIF1<0上與點(diǎn)SKIPIF1<0在劣弧SKIPIF1<0上去分析求解即可求得答案.【詳解】解:∵SKIPIF1<0,若SKIPIF1<0在優(yōu)弧SKIPIF1<0上,如圖,則:SKIPIF1<0;若點(diǎn)SKIPIF1<0在劣弧SKIPIF1<0上,如圖,則:SKIPIF1<0;故答案為:SKIPIF1<0或SKIPIF1<0.41.如圖,在圓內(nèi)接正六邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0交于點(diǎn)G,已知半徑為SKIPIF1<0,則SKIPIF1<0的長(zhǎng)為________.

【答案】2【分析】連接SKIPIF1<0、SKIPIF1<0,則三角形SKIPIF1<0為直角三角形,利用勾股定理即可求解.【詳解】解:連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0經(jīng)過O點(diǎn),且O是SKIPIF1<0的中點(diǎn),∵六邊形SKIPIF1<0是正六邊形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0的長(zhǎng)為x,則SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍去).故答案為:2.42.如圖,四邊形SKIPIF1<0內(nèi)接于以SKIPIF1<0為直徑的圓,圓心為SKIPIF1<0,且SKIPIF1<0,延長(zhǎng)SKIPIF1<0、SKIPIF1<0交于SKIPIF1<0,連接SKIPIF1<0.(1)求證:SKIPIF1<0;(2)過SKIPIF1<0點(diǎn)作SKIPIF1<0的垂線交SKIPIF1<0的延長(zhǎng)線于SKIPIF1<0,且SKIPIF1<0.①求線段SKIPIF1<0的值;②若SKIPIF1<0,求SKIPIF1<0的長(zhǎng).【答案】(1)證明見解析(2)①SKIPIF1<0;②SKIPIF1<0【分析】(1)先利用圓心角定理的推論證明SKIPIF1<0,SKIPIF1<0得到再利用圓周角定理得到SKIPIF1<0,即可求證.(2)①先證明SKIPIF1<0,得到對(duì)應(yīng)線段的比例,再求解即可;②分別求出SKIPIF1<0和SKIPIF1<0,再利用勾股定理建立方程求解即可.【詳解】(1)證明:如圖,連接SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)解:①∵SKIPIF1<0,∴設(shè)SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;②∵SKIPIF1<0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論