2022-2023學(xué)年洛陽市重點中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標測試試題含解析_第1頁
2022-2023學(xué)年洛陽市重點中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標測試試題含解析_第2頁
2022-2023學(xué)年洛陽市重點中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標測試試題含解析_第3頁
2022-2023學(xué)年洛陽市重點中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標測試試題含解析_第4頁
2022-2023學(xué)年洛陽市重點中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標測試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.將拋物線向上平移兩個單位長度,得到的拋物線解析式是()A. B.C. D.2.如圖,是矩形內(nèi)的任意一點,連接、、、,得到,,,,設(shè)它們的面積分別是,,,,給出如下結(jié)論:①②③若,則④若,則點在矩形的對角線上.其中正確的結(jié)論的序號是()A.①② B.②③ C.③④ D.②④3.在平行四邊形ABCD中,點E是邊AD上一點,且AE=2ED,EC交對角線BD于點F,則等于()A. B. C. D.4.對于二次函數(shù)y=(x﹣1)2+2的圖象,下列說法正確的是()A.開口向下 B.對稱軸是x=﹣1 C.與x軸有兩個交點 D.頂點坐標是(1,2)5.兩個相似三角形,其面積比為16:9,則其相似比為()A.16:9 B.4:3 C.9:16 D.3:46.二次函數(shù)(b>0)與反比例函數(shù)在同一坐標系中的圖象可能是()A. B. C. D.7.在等腰直角三角形ABC中,AB=AC=4,點O為BC的中點,以O(shè)為圓心作⊙O交BC于點M、N,⊙O與AB、AC相切,切點分別為D、E,則⊙O的半徑和∠MND的度數(shù)分別為()A.2,22.5° B.3,30° C.3,22.5° D.2,30°8.下列事件中,是必然事件的是()A.某射擊運動員射擊一次,命中靶心B.拋一枚硬幣,一定正面朝上C.打開電視機,它正在播放新聞聯(lián)播D.三角形的內(nèi)角和等于180°9.如果一個扇形的半徑是1,弧長是,那么此扇形的圓心角的大小為()A.30° B.45°C.60° C.90°10.已知,則代數(shù)式的值為()A. B. C. D.11.如圖,正比例函數(shù)y=x與反比例函數(shù)y=的圖象相交于A,C兩點.AB⊥x軸于B,CD⊥x軸于D,當四邊形ABCD的面積為6時,則k的值是()A.6 B.3 C.2 D.12.如圖是正方體的一種平面展開圖,它的每個面上都有一個漢字,那么在原正方體的表面上,與漢字“治”相對的面上的漢字是()A.全 B.面 C.依 D.法二、填空題(每題4分,共24分)13.如圖,在正方形和正方形中,點和點的坐標分別為,,則兩個正方形的位似中心的坐標是___________.14.拋物線的對稱軸是________.15.某校數(shù)學(xué)興趣小組為測量學(xué)校旗桿AC的高度,在點F處豎立一根長為1.5米的標桿DF,如圖所示,量出DF的影子EF的長度為1米,再量出旗桿AC的影子BC的長度為6米,那么旗桿AC的高度為_______米.16.已知二次函數(shù)y=ax2+bx+c的圖象如圖,對稱軸為直線x=1,則不等式ax2+bx+c>0的解集是_____.17.如圖,直線y=ax+b過點A(0,2)和點B(﹣3,0),則方程ax+b=0的解是_____.18.將拋物線向上平移1個單位后,再向左平移2個單位,得一新的拋物線,那么新的拋物線的表達式是__________________________.三、解答題(共78分)19.(8分)已知關(guān)于x的方程ax2+(3﹣2a)x+a﹣3=1.(1)求證:無論a為何實數(shù),方程總有實數(shù)根.(2)如果方程有兩個實數(shù)根x1,x2,當|x1﹣x2|=時,求出a的值.20.(8分)如圖,菱形ABCD的對角線AC和BD交于點O,AB=10,∠ABC=60°,求AC和BD的長.21.(8分)定義:如圖1,在中,把繞點逆時針旋轉(zhuǎn)()并延長一倍得到,把繞點順時針旋轉(zhuǎn)并延長一倍得到,連接.當時,稱是的“倍旋三角形”,邊上的中線叫做的“倍旋中線”.特例感知:(1)如圖1,當,時,則“倍旋中線”長為______;如圖2,當為等邊三角形時,“倍旋中線”與的數(shù)量關(guān)系為______;猜想論證:(2)在圖3中,當為任意三角形時,猜想“倍旋中線”與的數(shù)量關(guān)系,并給予證明.22.(10分)如圖,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,請僅用無刻度直尺作圖:(1)在圖1中作出圓心O;(2)在圖2中過點B作BF∥AC.23.(10分)如圖,在東西方向的海岸線l上有長為300米的碼頭AB,在碼頭的最西端A處測得輪船M在它的北偏東45°方向上;同一時刻,在A點正東方向距離100米的C處測得輪船M在北偏東22°方向上.(1)求輪船M到海岸線l的距離;(結(jié)果精確到0.01米)(2)如果輪船M沿著南偏東30°的方向航行,那么該輪船能否行至碼頭AB靠岸?請說明理由.(參考數(shù)據(jù):sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,≈1.1.)24.(10分)如圖,在平面直角坐標系中,拋物線的頂點坐標為,與軸交于點,與軸交于點,.(1)求二次函數(shù)的表達式;(2)過點作平行于軸,交拋物線于點,點為拋物線上的一點(點在上方),作平行于軸交于點,當點在何位置時,四邊形的面積最大?并求出最大面積.25.(12分)如圖,將△ABC繞點C順時針旋轉(zhuǎn)得到△DEC,使點A的對應(yīng)點D恰好落在邊AB上,點B的對應(yīng)點為E,連接BE.(Ⅰ)求證:∠A=∠EBC;(Ⅱ)若已知旋轉(zhuǎn)角為50°,∠ACE=130°,求∠CED和∠BDE的度數(shù).26.在平面直角坐標系中,拋物線與軸的交點為A,B(點A在點B的左側(cè)).(1)求點A,B的坐標;(2)橫、縱坐標都是整數(shù)的點叫整點.①直接寫出線段AB上整點的個數(shù);②將拋物線沿翻折,得到新拋物線,直接寫出新拋物線在軸上方的部分與線段所圍成的區(qū)域內(nèi)(包括邊界)整點的個數(shù).

參考答案一、選擇題(每題4分,共48分)1、D【分析】按“左加右減括號內(nèi),上加下減括號外”的規(guī)律平移即可得出所求函數(shù)的解析式.【詳解】由題意得=.故選D.【點睛】本題考查了二次函數(shù)圖象的平移,其規(guī)律是:將二次函數(shù)解析式轉(zhuǎn)化成頂點式y(tǒng)=a(x-h)2+k

(a,b,c為常數(shù),a≠0),確定其頂點坐標(h,k),在原有函數(shù)的基礎(chǔ)上“h值正右移,負左移;k值正上移,負下移”.2、D【分析】根據(jù)三角形面積公式、矩形性質(zhì)及相似多邊形的性質(zhì)得出:①矩形對角線平分矩形,S△ABD=S△BCD,只有P點在BD上時,S?+S?=S?+S4;②根據(jù)底邊相等的兩個三角形的面積公式求和可知,S?+S?=矩形ABCD面積,同理S?+S4=矩形ABCD面積,所以S?+S?=S?+S4;③根據(jù)底邊相等高不相等的三角形面積比等于高的比來說明即可;④根據(jù)相似四邊形判定和性質(zhì),對應(yīng)角相等、對應(yīng)邊成比例的四邊形相似,矩形AEPF∽矩形ABCD推出,點P在對角線上.【詳解】解:①當點P在矩形的對角線BD上時,S?+S?=S?+S4.但P是矩形ABCD內(nèi)的任意一點,所以該等式不一定成立。故①不一定正確;②∵矩形∴AB=CD,AD=BC∵△APD以AD為底邊,△PBC以BC為底邊,這兩三角形的底相等,高的和為AB,∴S?+S?=S矩形ABCD;同理可得S?+S4=S矩形ABCD,∴②S?+S4=S?+S?正確;③若S?=2S?,只能得出△APD與△PBC高度之比是,S?、S4分別是以AB、CD為底的三角形的面積,底相等,高的比不一定等于,S4=2S2不一定正確;故此選項錯誤;④過點P分別作PF⊥AD于點F,PE⊥AB于點E,F.若S1=S2,.則AD·PF=AB·PE∴△APD與△PAB的高的比為:∵∠DAE=∠PEA=∠PFA=90°∴四邊形AEPF是矩形,∴矩形AEPF∽矩形ABCD∴∴P點在矩形的對角線上,選項④正確.故選:D【點睛】本題考查了三角形面積公式的應(yīng)用,相似多邊形的判定和性質(zhì),用相似多邊形性質(zhì)對應(yīng)邊成比例是解決本題的難點.3、A【解析】試題分析:如圖,∵四邊形ABCD為平行四邊形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴,設(shè)ED=k,則AE=2k,BC=3k,∴==,故選A.考點:1.相似三角形的判定與性質(zhì);2.平行四邊形的性質(zhì).4、D【解析】試題解析:二次函數(shù)y=(x-1)2+2的圖象開口向上,頂點坐標為(1,2),對稱軸為直線x=1,拋物線與x軸沒有公共點.故選D.5、B【分析】根據(jù)兩個相似多邊形的面積比為16:9,面積之比等于相似比的平方.【詳解】根據(jù)題意得:=.即這兩個相似多邊形的相似比為4:1.故選:B.【點睛】本題考查了相似多邊形的性質(zhì).相似多邊形對應(yīng)邊之比、周長之比等于相似比,而面積之比等于相似比的平方.6、B【解析】試題分析:先根據(jù)各選項中反比例函數(shù)圖象的位置確定a的范圍,再根據(jù)a的范圍對拋物線的大致位置進行判斷,從而對各選項作出判斷:∵當反比例函數(shù)經(jīng)過第二、四象限時,a<0,∴拋物線(b>0)中a<0,b>0,∴拋物線開口向下.所以A選項錯誤.∵當反比例函數(shù)經(jīng)過第一、三象限時,a>0,∴拋物線(b>0)中a>0,b>0,∴拋物線開口向上,拋物線與y軸的交點在x軸上方.所以B選項正確,C,D選項錯誤.故選B.考點:1.二次函數(shù)和反比例函數(shù)的圖象與系數(shù)的關(guān)系;2.數(shù)形結(jié)合思想的應(yīng)用.7、A【解析】解:連接OA,∵AB與⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O為BC的中點,∴AO⊥BC,∴OD∥AC,∵O為BC的中點,∴OD=AC=2;∵∠DOB=45°,∴∠MND=∠DOB=1.5°,故選A.【點睛】本題考查切線的性質(zhì);等腰直角三角形.8、D【分析】根據(jù)必然事件、不可能事件、隨機事件的概念解答即可.【詳解】A.某射擊運動員射擊一次,命中靶心,是隨機事件,故此選項錯誤;B.拋一枚硬幣,一定正面朝上,是隨機事件,故此選項錯誤;C.打開電視機,它正在播放新聞聯(lián)播,是隨機事件,故此選項錯誤;D.三角形的內(nèi)角和等于180°,是必然事件.故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.9、C【分析】根據(jù)弧長公式,即可求解【詳解】設(shè)圓心角是n度,根據(jù)題意得,解得:n=1.故選C【點睛】本題考查了弧長的有關(guān)計算.10、B【解析】試題分析:根據(jù)題意令a=2k,b=3k,.故選B.考點:比例的性質(zhì).11、B【分析】根據(jù)反比例函數(shù)的對稱性可知:OB=OD,AB=CD,再由反比例函數(shù)y=中k的幾何意義,即可得到結(jié)論.【詳解】解:∵正比例函數(shù)y=x與反比例函數(shù)y=的圖象相交于A,C兩點,AB⊥x軸于B,CD⊥x軸于D,∴AB=OB=OD=CD,∴四邊形ABCD是平行四邊形,∴k=2S△AOB=2×=3,故選:B.【點睛】本題考查反比例函數(shù)與正比例函數(shù)的結(jié)合題型,關(guān)鍵在于熟悉反比例函數(shù)k值的幾何意義.12、C【分析】首先將展開圖折疊,即可得出與漢字“治”相對的面上的漢字.【詳解】由題意,得與漢字“治”相對的面上的漢字是“依”,故答案為C.【點睛】此題主要考查對正方體展開圖的認識,熟練掌握,即可解題.二、填空題(每題4分,共24分)13、或【分析】根據(jù)位似變換中對應(yīng)點的坐標的變化規(guī)律,分兩種情況:一種是當點E和C是對應(yīng)頂點,G和A是對應(yīng)頂點;另一種是A和E是對應(yīng)頂點,C和G是對應(yīng)頂點.【詳解】∵正方形和正方形中,點和點的坐標分別為,∴(1)當點E和C是對應(yīng)頂點,G和A是對應(yīng)頂點,位似中心就是EC與AG的交點.設(shè)AG所在的直線的解析式為解得∴AG所在的直線的解析式為當時,,所以EC與AG的交點為(2)A和E是對應(yīng)頂點,C和G是對應(yīng)頂點.,則位似中心就是AE與CG的交點設(shè)AE所在的直線的解析式為解得∴AE所在的直線的解析式為設(shè)CG所在的直線的解析式為解得∴AG所在的直線的解析式為聯(lián)立解得∴AE與CG的交點為綜上所述,兩個正方形的位似中心的坐標是或故答案為或【點睛】本題主要考查位似圖形,涉及了待定系數(shù)法求函數(shù)解析,求位似中心,正確分情況討論是解題的關(guān)鍵.14、【分析】根據(jù)二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸是直線x=?計算.【詳解】拋物線y=2x2+24x?7的對稱軸是:x=?=?1,故答案為:x=?1.【點睛】本題考查的是二次函數(shù)的性質(zhì),掌握二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸是直線x=?是解題的關(guān)鍵.15、2【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.根據(jù)相似三角形的對應(yīng)邊的比相等,即可求解.【詳解】解:∵DE∥AB,DF∥AC,

∴△DEF∽△ABC,

∴,

即,

∴AC=6×1.5=2米.

故答案為:2.【點睛】本題考查了相似三角形在測量高度時的應(yīng)用,解題時關(guān)鍵是找出相似的三角形,然后根據(jù)對應(yīng)邊成比例列出方程,建立適當?shù)臄?shù)學(xué)模型來解決問題.16、﹣1<x<1【分析】先求出函數(shù)與x軸的另一個交點,再根據(jù)圖像即可求解.【詳解】解:∵拋物線的對稱軸為直線x=1,而拋物線與x軸的一個交點坐標為(1,0),∴拋物線與x軸的另一個交點坐標為(﹣1,0),∵當﹣1<x<1時,y>0,∴不等式ax2+bx+c>0的解集為﹣1<x<1.故答案為﹣1<x<1.【點睛】此題主要考查二次函數(shù)的圖像,解題的關(guān)鍵是求出函數(shù)與x軸的另一個交點.17、x=﹣1【分析】所求方程ax+b=0的解,即為函數(shù)y=ax+b圖像與x軸交點橫坐標,根據(jù)已知條件中點B即可確定.【詳解】解:方程ax+b=0的解,即為函數(shù)y=ax+b圖象與x軸交點的橫坐標,∵直線y=ax+b過B(﹣1,0),∴方程ax+b=0的解是x=﹣1,故答案為:x=﹣1.【點睛】本題主要考查了一次函數(shù)與一元一次方程的關(guān)系,掌握一次函數(shù)與一元一次方程之間的關(guān)系是解題的關(guān)鍵.18、y=(x+2)2-1【分析】根據(jù)函數(shù)圖象的平移規(guī)律解答即可得到答案【詳解】由題意得:平移后的函數(shù)解析式是,故答案為:.【點睛】此題考查拋物線的平移規(guī)律:左加右減,上加下減,正確掌握平移的規(guī)律并運用解題是關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2)﹣2或2【分析】(1)證明一元二次方程根的判別式恒大于等于1,即可解答;(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,以及,由|x1﹣x2|=即可求得a的值.【詳解】(1)證明:∵關(guān)于x的方程ax2+(3﹣2a)x+a﹣3=1中,△=(3﹣2a)2﹣4a(a﹣3)=9>1,∴無論a為何實數(shù),方程總有實數(shù)根.(2)解:如果方程的兩個實數(shù)根x1,x2,則,∵,∴,解得a=±2.故a的值是﹣2或2.【點睛】本本題考查了一元二次方程的判別式和根與系數(shù)的關(guān)系,解決本題的關(guān)鍵是正確理解題意,熟練掌握一元二次方程的判別式和根與系數(shù)之間的關(guān)系.20、AC=10,BD=10【分析】根據(jù)菱形的性質(zhì)可得Rt△ABO中,∠ABO=∠ABD=∠ABC=30°,則可得AO和BO的長,根據(jù)AC=2AO,BD=2BO可得AC和BD的長;【詳解】解:∵四邊形ABCD是菱形,∴AC⊥BD,OA=OC=AC,OB=OD=BD,∠ABD=∠ABC=30°,在Rt△ABO中,AB=10,∠ABO=∠ABD=30°,∴AO=AB=5,BO=AB=5,∴AC=2AO=10,BD=2BO=10.【點睛】本題主要考查了菱形的性質(zhì),解直角三角形,掌握菱形的性質(zhì),解直角三角形是解題的關(guān)鍵.21、(1)①4,②;(2),證明見解析.【分析】(1)如圖1,首先證明,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可解決問題;如圖2,過點A作,易證,根據(jù)易得結(jié)論.(2)延長到,使得,連接,易證四邊形是平行四邊形,再證明得,故可得結(jié)論.【詳解】(1)如圖1,∵,∴∵,∴∴∵BC=4,∴,∵D是的中點,∴AD=;如圖2,∵,,∴根據(jù)“倍旋中線”知等腰三角形,過A作,垂足為∴,,∵D是等邊三角形的邊的中點,且∴∴∴(2)結(jié)論:理由:如圖,延長到,使得,連接,∵,∴四邊形是平行四邊形∴,∵∴∵∴∴∴【點睛】本題屬于幾何變換綜合題,主要考查相似三角形的判定和性質(zhì)、直角三角形的性質(zhì)、等邊三角形的判定和性質(zhì)等知識的綜合運用,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題.22、見解析.【分析】(1)畫出⊙O的兩條直徑,交點即為圓心O.(2)作直線AO交⊙O于F,直線BF即為所求.【詳解】解:作圖如下:(1);(2).【點睛】本題考查作圖?復(fù)雜作圖,圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.23、(1)167.79;(2)能.理由見解析.【分析】(1)過點M作MD⊥AC交AC的延長線于D,設(shè)DM=x.由三角函數(shù)表示出CD和AD的長,然后列出方程,解方程即可;(2)作∠DMF=30°,交l于點F.利用解直角三角形求出DF的長度,然后得到AF的長度,與AB進行比較,即可得到答案.【詳解】解:(1)過點M作MD⊥AC交AC的延長線于D,設(shè)DM=x.∵在Rt△CDM中,CD=DM·tan∠CMD=x·tan22°,又∵在Rt△ADM中,∠MAC=45°,∴AD=DM=x,∵AD=AC+CD=100+x·tan22°,∴100+x·tan22°=x.∴(米).答:輪船M到海岸線l的距離約為167.79米.(2)作∠DMF=30°,交l于點F.在Rt△DMF中,有:DF=DM·tan∠FMD=DM·tan30°=DM≈≈96.87米.∴AF=AC+CD+DF=DM+DF≈167.79+96.87=264.66<2.∴該輪船能行至碼頭靠岸.【點睛】本題考查了方向角問題.注意準確構(gòu)造直角三角形是解此題的關(guān)鍵.24、(1);(2)點的坐標為時,【分析】(1)根據(jù)題目已知條件,可以由頂點坐標及A點坐標先求出二次函數(shù)頂點式,進而轉(zhuǎn)化為一般式即可;(2)根據(jù)題意,先求出直線AB的解析式,再設(shè)出點P和D坐標,進而先得出四邊形的面積表達式,即可求得面積最大值.【詳解】(1)∵頂點坐標為,∴設(shè)拋物線解析式為,∵拋物線與軸交于點,∴,∴,∴,∴;(2)當時,,∴,,∴,,設(shè)直線的解析式為,∵,,∴,,∴直線的解析式為.設(shè),∴,∴.∵,∴,∴,∵,∴,∵中,對稱軸為,∴當,即點的坐標為時,.【點睛】本題主要考查了二次函數(shù)解析式及四邊形面積的最值,熟練掌握解析式的求法以及最值的求法是解決本題的關(guān)鍵,在求最值的時候注意將對稱軸與自變量的取值范圍進行對比,進而判斷是在何處取最大值.25、(Ⅰ)證明見解析;(Ⅱ)∠BDE=50°,∠CED=35°【分析】(Ⅰ)由旋轉(zhuǎn)的性質(zhì)可得AC=CD,CB=CE,∠ACD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論