2023-2024學年湖南省岳陽市城區(qū)十二校初中數學畢業(yè)考試模擬沖刺卷含解析_第1頁
2023-2024學年湖南省岳陽市城區(qū)十二校初中數學畢業(yè)考試模擬沖刺卷含解析_第2頁
2023-2024學年湖南省岳陽市城區(qū)十二校初中數學畢業(yè)考試模擬沖刺卷含解析_第3頁
2023-2024學年湖南省岳陽市城區(qū)十二校初中數學畢業(yè)考試模擬沖刺卷含解析_第4頁
2023-2024學年湖南省岳陽市城區(qū)十二校初中數學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖南省岳陽市城區(qū)十二校初中數學畢業(yè)考試模擬沖刺卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.一個六邊形的六個內角都是120°(如圖),連續(xù)四條邊的長依次為1,3,3,2,則這個六邊形的周長是()A.13 B.14 C.15 D.162.下列運算錯誤的是()A.(m2)3=m6B.a10÷a9=aC.x3?x5=x8D.a4+a3=a73.下列計算正確的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b24.已知二次函數y=(x+a)(x﹣a﹣1),點P(x0,m),點Q(1,n)都在該函數圖象上,若m<n,則x0的取值范圍是()A.0≤x0≤1 B.0<x0<1且x0≠C.x0<0或x0>1 D.0<x0<15.下列各數中比﹣1小的數是()A.﹣2 B.﹣1 C.0 D.16.在同一平面直角坐標系中,函數y=x+k與(k為常數,k≠0)的圖象大致是()A. B.C. D.7.如圖,四邊形ABCE內接于⊙O,∠DCE=50°,則∠BOE=()A.100° B.50° C.70° D.130°8.將拋物線y=x2﹣x+1先向左平移2個單位長度,再向上平移3個單位長度,則所得拋物線的表達式為()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+49.若不等式組2x-1>3x≤a的整數解共有三個,則aA.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤610.函數y=ax2+1與(a≠0)在同一平面直角坐標系中的圖象可能是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.將ΔABC繞點B逆時針旋轉到ΔA'BC'使A、B、C'在同一直線上,若∠BCA=90°,∠BAC=30°,AB=4cm,則圖中陰影部分面積為________cm12.如圖,四邊形ABCD內接于⊙O,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.若∠E+∠F=80°,則∠A=____°.13.一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD水平,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經過的路線長為____cm.14.如圖,AB是⊙O的直徑,BD,CD分別是過⊙O上點B,C的切線,且∠BDC=110°.連接AC,則∠A的度數是_____°.15.從﹣2,﹣1,1,2四個數中,隨機抽取兩個數相乘,積為大于﹣4小于2的概率是__.16.受益于電子商務發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務迅猛發(fā)展.預計達州市2018年快遞業(yè)務量將達到5.5億件,數據5.5億用科學記數法表示為_____.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點O,交BC于點E,AD∥BC,連接CD.(1)求證:AO=EO;(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結論.18.(8分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.19.(8分)已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當四邊形ENFM為矩形時,求證:BE=BN.20.(8分)如圖,點O是△ABC的邊AB上一點,⊙O與邊AC相切于點E,與邊BC,AB分別相交于點D,F,且DE=EF.求證:∠C=90°;當BC=3,sinA=時,求AF的長.21.(8分)在平面直角坐標系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉,得△AC′D′,記旋轉角為α.(I)如圖①,連接BD′,當BD′∥OA時,求點D′的坐標;(II)如圖②,當α=60°時,求點C′的坐標;(III)當點B,D′,C′共線時,求點C′的坐標(直接寫出結果即可).22.(10分)解不等式,并把解集在數軸上表示出來.23.(12分)如圖,拋物線l:y=(x﹣h)2﹣2與x軸交于A,B兩點(點A在點B的左側),將拋物線ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數?的圖象.(1)若點A的坐標為(1,0).①求拋物線l的表達式,并直接寫出當x為何值時,函數?的值y隨x的增大而增大;②如圖2,若過A點的直線交函數?的圖象于另外兩點P,Q,且S△ABQ=2S△ABP,求點P的坐標;(2)當2<x<3時,若函數f的值隨x的增大而增大,直接寫出h的取值范圍.24.規(guī)定:不相交的兩個函數圖象在豎直方向上的最短距離為這兩個函數的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

解:如圖所示,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、I.因為六邊形ABCDEF的六個角都是120°,所以六邊形ABCDEF的每一個外角的度數都是60°.所以都是等邊三角形.所以所以六邊形的周長為3+1+4+2+2+3=15;故選C.2、D【解析】【分析】利用合并同類項法則,單項式乘以單項式法則,同底數冪的乘法、除法的運算法則逐項進行計算即可得.【詳解】A、(m2)3=m6,正確;B、a10÷a9=a,正確;C、x3?x5=x8,正確;D、a4+a3=a4+a3,錯誤,故選D.【點睛】本題考查了合并同類項、單項式乘以單項式、同底數冪的乘除法,熟練掌握各運算的運算法則是解題的關鍵.3、D【解析】A、原式=a2﹣4,不符合題意;B、原式=a2﹣a﹣2,不符合題意;C、原式=a2+b2+2ab,不符合題意;D、原式=a2﹣2ab+b2,符合題意,故選D4、D【解析】分析:先求出二次函數的對稱軸,然后再分兩種情況討論,即可解答.詳解:二次函數y=(x+a)(x﹣a﹣1),當y=0時,x1=﹣a,x2=a+1,∴對稱軸為:x==當P在對稱軸的左側(含頂點)時,y隨x的增大而減小,由m<n,得:0<x0≤;當P在對稱軸的右側時,y隨x的增大而增大,由m<n,得:<x0<1.綜上所述:m<n,所求x0的取值范圍0<x0<1.故選D.點睛:本題考查了二次函數圖象上點的坐標特征,解決本題的關鍵是利用二次函數的性質,要分類討論,以防遺漏.5、A【解析】

根據兩個負數比較大小,絕對值大的負數反而小,可得答案.【詳解】解:A、﹣2<﹣1,故A正確;B、﹣1=﹣1,故B錯誤;C、0>﹣1,故C錯誤;D、1>﹣1,故D錯誤;故選:A.【點睛】本題考查了有理數大小比較,利用了正數大于0,0大于負數,注意兩個負數比較大小,絕對值大的負數反而小.6、B【解析】

選項A中,由一次函數y=x+k的圖象知k<0,由反比例函數y=的圖象知k>0,矛盾,所以選項A錯誤;選項B中,由一次函數y=x+k的圖象知k>0,由反比例函數y=的圖象知k>0,正確,所以選項B正確;由一次函數y=x+k的圖象知,函數圖象從左到右上升,所以選項C、D錯誤.故選B.7、A【解析】

根據圓內接四邊形的任意一個外角等于它的內對角求出∠A,根據圓周角定理計算即可.【詳解】四邊形ABCE內接于⊙O,,由圓周角定理可得,,故選:A.【點睛】本題考查的知識點是圓的內接四邊形性質,解題關鍵是熟記圓內接四邊形的任意一個外角等于它的內對角(就是和它相鄰的內角的對角).8、A【解析】

先將拋物線解析式化為頂點式,左加右減的原則即可.【詳解】y=x當向左平移2個單位長度,再向上平移3個單位長度,得y=x-故選A.【點睛】本題考查二次函數的平移;掌握平移的法則“左加右減”,二次函數的平移一定要將解析式化為頂點式進行;9、C【解析】

首先確定不等式組的解集,利用含a的式子表示,根據整數解的個數就可以確定有哪些整數解,根據解的情況可以得到關于a的不等式,從而求出a的范圍.【詳解】解不等式組得:2<x≤a,∵不等式組的整數解共有3個,∴這3個是3,4,5,因而5≤a<1.故選C.【點睛】本題考查了一元一次不等式組的整數解,正確解出不等式組的解集,確定a的范圍,是解答本題的關鍵.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.10、B【解析】試題分析:分a>0和a<0兩種情況討論:當a>0時,y=ax2+1開口向上,頂點坐標為(0,1);位于第一、三象限,沒有選項圖象符合;當a<0時,y=ax2+1開口向下,頂點坐標為(0,1);位于第二、四象限,B選項圖象符合.故選B.考點:1.二次函數和反比例函數的圖象和性質;2.分類思想的應用.二、填空題(本大題共6個小題,每小題3分,共18分)11、4π【解析】分析:易得整理后陰影部分面積為圓心角為110°,兩個半徑分別為4和1的圓環(huán)的面積.詳解:由旋轉可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,∴BC=1cm,AC=13cm,∠A′BA=110°,∠CBC′=110°,∴陰影部分面積=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=120π360×(41-11)=4πcm1故答案為4π.點睛:本題利用旋轉前后的圖形全等,直角三角形的性質,扇形的面積公式求解.12、50【解析】試題分析:連結EF,如圖,根據圓內接四邊形的性質得∠A+∠BCD=180°,根據對頂角相等得∠BCD=∠ECF,則∠A+∠ECF=180°,根據三角形內角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形內角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,則∠A+80°+∠A=180°,然后解方程即可.試題解析:連結EF,如圖,∵四邊形ABCD內接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考點:圓內接四邊形的性質.13、【解析】試題解析:如下圖,畫出圓盤滾動過程中圓心移動路線的分解圖象.可以得出圓盤滾動過程中圓心走過的路線由線段OO1,線段O1O2,圓弧,線段O3O4四部分構成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC與AB延長線的夾角為60°,O1是圓盤在AB上滾動到與BC相切時的圓心位置,∴此時⊙O1與AB和BC都相切.則∠O1BE=∠O1BF=60度.此時Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,BE=cm.∴OO1=AB-BE=(60-)cm.∵BF=BE=cm,∴O1O2=BC-BF=(40-)cm.∵AB∥CD,BC與水平夾角為60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.則圓盤在C點處滾動,其圓心所經過的路線為圓心角為60°且半徑為10cm的圓弧.∴的長=×2π×10=πcm.∵四邊形O3O4DC是矩形,∴O3O4=CD=40cm.綜上所述,圓盤從A點滾動到D點,其圓心經過的路線長度是:(60-)+(40-)+π+40=(140-+π)cm.14、4.【解析】試題分析:連結BC,因為AB是⊙O的直徑,所以∠ACB=90°,∠A+∠ABC=90°,又因為BD,CD分別是過⊙O上點B,C的切線,∠BDC=440°,所以CD=BD,所以∠BCD=∠DBC=4°,又∠ABD=90°,所以∠A=∠DBC=4°.考點:4.圓周角定理;4.切線的性質;4.切線長定理.15、1【解析】

列表得出所有等可能結果,從中找到積為大于-4小于2的結果數,根據概率公式計算可得.【詳解】解:列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結果,其中積為大于-4小于2的有6種結果,∴積為大于-4小于2的概率為612=1故答案為:12【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數與總情況數之比.16、5.5×1.【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.詳解:5.5億=550000000=5.5×1,故答案為5.5×1.點睛:此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.三、解答題(共8題,共72分)17、(1)詳見解析;(2)平行四邊形.【解析】

(1)由“三線合一”定理即可得到結論;

(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根據垂直平分線的性質有AB=BE,于是AD=BE,進而得到AD=EC,根據平行四邊形的判定即可得到結論.【詳解】證明:(1)∵BD平分∠ABC,AE⊥BD,∴AO=EO;(2)平行四邊形,證明:∵AD∥BC,∴∠ADB=∠ABD,∴AD=AB,∵OA=OE,OB⊥AE,∴AB=BE,∴AD=BE,∵BE=CE,∴AD=EC,∴四邊形AECD是平行四邊形.【點睛】考查等腰直角三角形的性質以及平行四邊形的判定,掌握平行四邊形的判定方法是解題的關鍵.18、見解析【解析】

根據角平分線的性質和直角三角形性質求∠BAF=∠ACG.進一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【點睛】此題重點考查學生對三角形全等證明的理解,熟練掌握兩三角形全等的證明是解題的關鍵.19、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由已知條件易得∠EAG=∠FCG,AG=GC結合∠AGE=∠FGC可得△EAG≌△FCG,從而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四邊形ENFM是平行四邊形;(2)如下圖,由四邊形ENFM為矩形可得EG=NG,結合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,則∠BAC=∠ACB,AE=CN,從而可得AB=CB,由此可得BE=BN.詳解:(1)∵四邊形ABCD為平行四四邊形邊形,∴AB//CD.∴∠EAG=∠FCG.∵點G為對角線AC的中點,∴AG=GC.∵∠AGE=∠FGC,∴△EAG≌△FCG.∴EG=FG.同理MG=NG.∴四邊形ENFM為平行四邊形.(2)∵四邊形ENFM為矩形,∴EF=MN,且EG=,GN=,∴EG=NG,又∵AG=CG,∠AGE=∠CGN,∴△EAG≌△NCG,∴∠BAC=∠ACB,AE=CN,∴AB=BC,∴AB-AE=CB-CN,∴BE=BN.點睛:本題是一道考查平行四邊形的判定和性質及矩形性質的題目,熟練掌握相關圖形的性質和判定是順利解題的關鍵.20、(1)見解析(2)【解析】

(1)連接OE,BE,因為DE=EF,所以=,從而易證∠OEB=∠DBE,所以OE∥BC,從可證明BC⊥AC;(2)設⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=從而可求出r的值.【詳解】解:(1)連接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O與邊AC相切于點E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=,∴AB=5,設⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=∴∴【點睛】本題考查圓的綜合問題,涉及平行線的判定與性質,銳角三角函數,解方程等知識,綜合程度較高,需要學生靈活運用所學知識.21、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】

(I)如圖①,當OB∥AC′,四邊形OBC′A是平行四邊形,只要證明B、C′、D′共線即可解決問題,再根據對稱性確定D″的坐標;(II)如圖②,當α=60°時,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解決問題;(III)分兩種情形分別求解即可解決問題;【詳解】解:(I)如圖①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴當OB∥AC′,四邊形OBC′A是平行四邊形,∵∠AOB=90°,∴四邊形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共線,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根據對稱性可知,點D″在線段BC′上時,D″(6,4)也滿足條件.綜上所述,滿足條件的點D坐標(10,4)或(6,4).(II)如圖②,當α=60°時,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=2,∴OK=6,∴C′(6,2).(III)①如圖③中,當B、C′、D′共線時,由(Ⅰ)可知,C′(8,4).②如圖④中,當B、C′、D′共線時,BD′交OA于F,易證△BOF≌△AC′F,∴OF=FC′,設OF=FC′=x,在Rt△ABC′中,BC′==8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴==,∴==,∴KC′=,KF=,∴OK=,∴C′(,﹣).【點睛】本題考查三角形綜合題、旋轉變換、矩形的判定和性質、平行線的性質、勾股定理等知識,解題的關鍵是靈活應用所學知識解決問題,學會用分類討論的思想思考問題,屬于中考壓軸題.22、見解析【解析】

根據解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數化為1可得解集.在數軸上表示出來即可.【詳解】解:去分母,得3x+1-6>4x-2,移項,得:3x-4x>-2+5,合并同類項,得-x>3,系數化為1,得x<-3,不等式的解集在數軸上表示如下:【點睛】此題考查解一元一次不等式,在數軸上表示不等式的解集,解題關鍵在于掌握運算順序.23、(1)①當1<x<3或x>5時,函數?的值y隨x的增大而增大,②P(,);(2)當3≤h≤4或h≤0時,函數f的值隨x的增大而增大.【解析】試題分析:(1)①利用待定系數法求拋物線的解析式,由對稱性求點B的坐標,根據圖象寫出函數?的值y隨x的增大而增大(即呈上升趨勢)的x的取值;②如圖2,作輔助線,構建對稱點F和直角角三角形AQE,根據S△ABQ=2S△ABP,得QE=2PD,證明△PAD∽△QAE,則,得AE=2AD,設AD=a,根據QE=2FD列方程可求得a的值,并計算P的坐標;(2)先令y=0求拋物線與x軸的兩個交點坐標,根據圖象中呈上升趨勢的部分,有兩部分:分別討論,并列不等式或不等式組可得h的取值.試題解析:(1)①把A(1,0)代入拋物線y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵點A在點B的左側,∴h>0,∴h=3,∴拋物線l的表達式為:y=(x﹣3)2﹣2,∴拋物線的對稱軸是:直線x=3,由對稱性得:B(5,0),由圖象可知:當1<x<3或x>5時,函數?的值y隨x的增大而增大;②如圖2,作PD⊥x軸于點D,延長PD交拋物線l于點F,作QE⊥x軸于E,則PD∥QE,由對稱性得:DF=PD,∵S△ABQ=2S△ABP,∴AB?QE=2×AB?PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,設AD=a,則OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵點F、Q在拋物線l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)當y=0時,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵點A在點B的左側,且h>0,∴A(h﹣2,0),B(h+2,0),如圖3,作拋物線的對稱軸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論