![2023屆萍鄉(xiāng)市重點中學數(shù)學九年級第一學期期末綜合測試模擬試題含解析_第1頁](http://file4.renrendoc.com/view2/M00/29/1B/wKhkFmaUZZuAf2kUAAH2uzTaJ1Y702.jpg)
![2023屆萍鄉(xiāng)市重點中學數(shù)學九年級第一學期期末綜合測試模擬試題含解析_第2頁](http://file4.renrendoc.com/view2/M00/29/1B/wKhkFmaUZZuAf2kUAAH2uzTaJ1Y7022.jpg)
![2023屆萍鄉(xiāng)市重點中學數(shù)學九年級第一學期期末綜合測試模擬試題含解析_第3頁](http://file4.renrendoc.com/view2/M00/29/1B/wKhkFmaUZZuAf2kUAAH2uzTaJ1Y7023.jpg)
![2023屆萍鄉(xiāng)市重點中學數(shù)學九年級第一學期期末綜合測試模擬試題含解析_第4頁](http://file4.renrendoc.com/view2/M00/29/1B/wKhkFmaUZZuAf2kUAAH2uzTaJ1Y7024.jpg)
![2023屆萍鄉(xiāng)市重點中學數(shù)學九年級第一學期期末綜合測試模擬試題含解析_第5頁](http://file4.renrendoc.com/view2/M00/29/1B/wKhkFmaUZZuAf2kUAAH2uzTaJ1Y7025.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.下列說法中錯誤的是()A.成中心對稱的兩個圖形全等B.成中心對稱的兩個圖形中,對稱點的連線被對稱軸平分C.中心對稱圖形的對稱中心是對稱點連線的中心D.中心對稱圖形繞對稱中心旋轉180°后,都能與自身重合2.下列圖案中是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個3.在Rt△ABC中,∠C=900,AC=4,AB=5,則sinB的值是()A. B. C. D.4.如圖所示,圖中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5.某地區(qū)在一次空氣質量檢測中,收集到5天的空氣質量指數(shù)如下:81,70,56,61,81,這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.70,81 B.81,81 C.70,70 D.61,816.目前,支付寶平臺入駐了不少的理財公司,推出了一些理財產品.李阿姨用10000元本金購買了一款理財產品,到期后自動續(xù)期,兩期結束后共收回本息10926元設此款理財產品每期的平均收益率為x,則根據(jù)題意可得方程()A. B.C. D.7.已知反比例函數(shù),下列結論中不正確的是.()A.圖象必經過點(3,-2) B.圖象位于第二、四象限C.若,則 D.在每一個象限內,隨值的增大而增大8.方程的解是().A.x1=x2=0 B.x1=x2=1 C.x1=0,x2=1 D.x1=0,x2=-19.如圖,周長為定值的平行四邊形中,,設的長為,周長為16,平行四邊形的面積為,與的函數(shù)關系的圖象大致如圖所示,當時,的值為()A.1或7 B.2或6 C.3或5 D.410.如圖,這個幾何體的左視圖是()A. B. C. D.11.如圖,將△AOB繞點O按逆時針方向旋轉45°后得到△A'OB',若∠AOB=15°,則∠AOB'的度數(shù)是()A.25° B.30° C.35° D.40°12.如圖,點A、B、C都在上,若∠AOB=72°,則∠ACB的度數(shù)為()A.18° B.30° C.36° D.72°二、填空題(每題4分,共24分)13.75°的圓心角所對的弧長是2.5cm,則此弧所在圓的半徑是_____cm.14.如圖,拋物線解析式為y=x2,點A1的坐標為(1,1),連接OA1;過A1作A1B1⊥OA1,分別交y軸、拋物線于點P1、B1;過B1作B1A2⊥A1B1分別交y軸、拋物線于點P2、A2;過A2作A2B2⊥B1A2,分別交y軸、拋物線于點P3、B2…;則點Pn的坐標是_____.15.如圖,二次函數(shù)的圖象記為,它與軸交于點,;將繞點旋轉180°得,交軸于點;將繞點旋轉180°得,交軸于點;……如此進行下去,得到一條“波浪線”.若在這條“波浪線”上,則____.16.圓錐側面積為32πcm2,底面半徑為4cm,則圓錐的母線長為____cm.17.如圖,矩形ABCD中,AB=2,BC=,F(xiàn)是AB中點,以點A為圓心,AD為半徑作弧交AB于點E,以點B為圓心,BF為半徑作弧交BC于點G,則圖中陰影部分面積的差S1﹣S2為_____.18.扇形的弧長為10πcm,面積為120πcm2,則扇形的半徑為_____cm.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系xOy中,直線y=x﹣2與反比例函數(shù)y=(k為常數(shù),k≠0)的圖象在第一象限內交于點A,點A的橫坐標為1.(1)求反比例函數(shù)的表達式;(2)設直線y=x﹣2與y軸交于點C,過點A作AE⊥x軸于點E,連接OA,CE.求四邊形OCEA的面積.20.(8分)(1)解方程(2)計算21.(8分)在一個三角形中,如果有一邊上的中線等于這條邊的一半,那么就稱這個三角形為“智慧三角形”.(1)如圖1,已知、是⊙上兩點,請在圓上畫出滿足條件的點,使為“智慧三角形”,并說明理由;(2)如圖2,是等邊三角形,,以點為圓心,的半徑為1畫圓,為邊上的一動點,過點作的一條切線,切點為,求的最小值;(3)如圖3,在平面直角坐標系中,⊙的半徑為1,點是直線上的一點,若在⊙上存在一點,使得為“智慧三角形”,當其面積取得最小值時,求出此時點的坐標.22.(10分)如圖,在正方形ABCD中,,點E為對角線AC上一動點(點E不與點A、C重合),連接DE,過點E作,交BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.(1)求AC的長;(2)求證矩形DEFG是正方形;(3)探究:的值是否為定值?若是,請求出這個定值;若不是,請說明理由.23.(10分)如圖,菱形ABCD的頂點A,D在直線l上,∠BAD=60°,以點A為旋轉中心將菱形ABCD順時針旋轉α(0°<α<30°),得到菱形AB′C′D′,B′C′交對角線AC于點M,C′D′交直線l于點N,連接MN,當MN∥B′D′時,解答下列問題:(1)求證:△AB′M≌△AD′N;(2)求α的大小.24.(10分)如圖,已知一次函數(shù)分別交x、y軸于A、B兩點,拋物線y=﹣x2+bx+c經過A、B兩點,與x軸的另一交點為C.(1)求b、c的值及點C的坐標;(2)動點P從點O出發(fā),以每秒1個單位長度的速度向點A運動,過P作x軸的垂線交拋物線于點D,交線段AB于點E.設運動時間為t(t>0)秒.①當t為何值時,線段DE長度最大,最大值是多少?(如圖1)②過點D作DF⊥AB,垂足為F,連結BD,若△BOC與△BDF相似,求t的值.(如圖2)25.(12分)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連接AC,過上一點E作EG∥AC交CD的延長線于點G,連接AE交CD于點F,且EG=FG.(1)求證:EG是⊙O的切線;(2)延長AB交GE的延長線于點M,若AH=2,,求OM的長.26.如圖,在中,,點是中點.連接.作,垂足為,的外接圓交于點,連接.(1)求證:;(2)過點作圓的切線,交于點.若,求的值;(3)在(2)的條件下,當時,求的長.
參考答案一、選擇題(每題4分,共48分)1、B【解析】試題分析:在平面內,把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關于這個點成中心對稱中心對稱,中心對稱圖形的對稱中心是對稱點連線的交點,根據(jù)中心對稱圖形的定義和性質可知A、C、D正確,B錯誤.故選B.考點:中心對稱.2、B【解析】根據(jù)中心對稱圖形的定義:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形可得答案.【詳解】解:第一個不是中心對稱圖形;第二個是中心對稱圖形;第三個不是中心對稱圖形;第四個是中心對稱圖形;故中心對稱圖形的有2個.故選B.【點睛】此題主要考查了中心對稱圖形,關鍵是找出對稱中心.3、D【解析】試題分析:正弦的定義:正弦由題意得,故選D.考點:銳角三角函數(shù)的定義點評:本題屬于基礎應用題,只需學生熟練掌握正弦的定義,即可完成.4、C【解析】根據(jù)軸對稱圖形和中心對稱圖形的定義(軸對稱圖形是沿某條直線對折,對折的兩部分能夠完全重合的圖形,中心對稱圖形是繞著某一點旋轉后能與自身重合的圖形)判斷即可.【詳解】解:A選項是中心對稱圖形但不是軸對稱圖形,A不符合題意;B選項是軸對稱圖形但不是中心對稱圖形,B不符合題意;C選項既是軸對稱圖形又是中心對稱圖形,C符合題意;D選項既不是軸對稱圖形又不是中心對稱圖形.故選:C.【點睛】本題考查了軸對稱圖形與中心對稱圖形,熟練掌握軸對稱圖形與中心對稱圖形的判斷方法是解題的關鍵.5、A【分析】根據(jù)中位數(shù)的定義和眾數(shù)的定義即可得出結論.【詳解】解:將這5天的空氣質量指數(shù)從小到大排列后為:56,61,70,81,81,故這組數(shù)據(jù)的中位數(shù)為:70根據(jù)眾數(shù)的定義,出現(xiàn)次數(shù)最多的數(shù)據(jù)為81,故眾數(shù)為81.故選:A.【點睛】此題考查的是求一組數(shù)據(jù)的中位數(shù)和眾數(shù),掌握中位數(shù)的定義和眾數(shù)的定義是解決此題的關鍵.6、B【分析】根據(jù)題意,找出等量關系列出方程,即可得到答案.【詳解】解:根據(jù)題意,設此款理財產品每期的平均收益率為x,則;故選擇:B.【點睛】本題考查了一元二次方程的應用——增長率問題,解題的關鍵是找到等量關系,列出方程.7、C【分析】A.將x=3代入反比例函數(shù),根據(jù)所求得的y值即可判斷;B.根據(jù)反比例函數(shù)的k值的正負即可判斷;C.結合反比例函數(shù)的圖象和性質即可判斷;D.根據(jù)反比例函數(shù)的k值的正負即可判斷.【詳解】解:A.當x=3時,,故函數(shù)圖象必經過點(3,-2),A選項正確;B.由反比例函數(shù)的系數(shù)k=-6<0,得到反比例函數(shù)圖象位于第二、四象限,本選項正確;C.由反比例函數(shù)圖象可知:當,則,故本選項不正確;D.由反比例函數(shù)的系數(shù)k=-6<0,得到反比例函數(shù)圖象在各自象限y隨x的增大而增大,故本選項正確.故選:C.【點睛】本題考查反比例函數(shù)的性質,反比例函數(shù)(k≠0),當k>0時,圖象位于第一、三象限,且在每一個象限,y隨x的增大而減??;當k<0時,圖象位于第二、四象限,且在每一個象限,y隨x的增大而增大.在做本題的時候可根據(jù)k值畫出函數(shù)的大致圖,結合圖象進行分析.8、D【分析】利用提公因式法解方程,即可得到答案.【詳解】解:∵,∴,∴或;故選擇:D.【點睛】本題考查了解一元二次方程,熟練掌握提公因式法解方程是解題的關鍵.9、B【分析】過點A作AE⊥BC于點E,構建直角△ABE,通過解該直角三角形求得AE的長度,然后利用平行四邊形的面積公式列出函數(shù)關系式,即可求解.【詳解】如圖,過點A作AE⊥BC于點E,∵∠B=60°,邊AB的長為x,∴AE=AB?sin60°=∵平行四邊形ABCD的周長為16,∴BC=(16?2x)=8?x,∴y=BC?AE=(8?x)×(0≤x≤8).當時,(8?x)×=解得x1=2,x2=6故選B.【點睛】考查了動點問題的函數(shù)圖象.掌握平行四邊形的周長公式和解直角三角形求得AD、BE的長度是解題的關鍵.10、B【解析】根據(jù)三視圖概念即可解題.【詳解】解:因為物體的左側高,所以會將右側圖形完全遮擋,看不見的直線要用虛線代替,故選B.【點睛】本題考查了三視圖的識別,屬于簡單題,熟悉三視圖的概念是解題關鍵.11、B【詳解】∵將△AOB繞點O按逆時針方向旋轉45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°,故選B.12、C【詳解】解:∵∠AOB=72°,∴∠ACB=∠AOB=36°,故選C.二、填空題(每題4分,共24分)13、1【分析】由弧長公式:計算.【詳解】解:由題意得:圓的半徑.故本題答案為:1.【點睛】本題考查了弧長公式.14、(0,n2+n)【分析】根據(jù)待定系數(shù)法分別求得直線OA1、A2B1、A2B2……的解析式,即可求得P1、P2、P3…的坐標,得出規(guī)律,從而求得點Pn的坐標.【詳解】解:∵點A1的坐標為(1,1),∴直線OA1的解析式為y=x,∵A1B1⊥OA1,∴OP1=2,∴P1(0,2),設A1P1的解析式為y=kx+b1,∴,解得,∴直線A1P1的解析式為y=﹣x+2,解求得B1(﹣2,4),∵A2B1∥OA1,設B1P2的解析式為y=x+b2,∴﹣2+b2=4,∴b2=6,∴P2(0,6),解求得A2(3,9)設A1B2的解析式為y=﹣x+b3,∴﹣3+b3=9,∴b3=12,∴P3(0,12),…∴Pn(0,n2+n),故答案為(0,n2+n).【點睛】本題考查了二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,待定系數(shù)法求一次函數(shù)的解析式,根據(jù)一次函數(shù)圖象上點的坐標特征得出規(guī)律是解題的關鍵.15、1【分析】根據(jù)拋物線與x軸的交點問題,得到圖象C1與x軸交點坐標為:(1,1),(2,1),再利用旋轉的性質得到圖象C2與x軸交點坐標為:(2,1),(4,1),則拋物線C2:y=(x-2)(x-4)(2≤x≤4),于是可推出橫坐標x為偶數(shù)時,縱坐標為1,橫坐標是奇數(shù)時,縱坐標為1或-1,由此即可解決問題.【詳解】解:∵一段拋物線C1:y=-x(x-2)(1≤x≤2),
∴圖象C1與x軸交點坐標為:(1,1),(2,1),
∵將C1繞點A1旋轉181°得C2,交x軸于點A2;,
∴拋物線C2:y=(x-2)(x-4)(2≤x≤4),
將C2繞點A2旋轉181°得C3,交x軸于點A3;
…
∴P(2121,m)在拋物線C1111上,
∵2121是偶數(shù),
∴m=1,故答案為1.【點睛】本題考查了二次函數(shù)與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.16、8【分析】根據(jù)扇形的面積公式計算即可.【詳解】設圓錐的母線長為,則:,解得:,故答案為:.【點睛】本題考查了圓錐的計算,正確理解圓錐的側面展開圖與原來的扇形之間的關系是解決本題的關鍵.17、3﹣【分析】根據(jù)圖形可以求得BF的長,然后根據(jù)圖形即可求得S1﹣S2的值.【詳解】解:∵在矩形ABCD中,AB=2,BC=,F(xiàn)是AB中點,∴BF=BG=1,∴S1=S矩形ABCD-S扇形ADE﹣S扇形BGF+S2,∴S1-S2=2×--=3-,故答案為:3﹣.【點睛】此題考查的是求不規(guī)則圖形的面積,掌握矩形的性質和扇形的面積公式是解決此題的關鍵.18、1【分析】根據(jù)扇形面積公式和扇形的弧長公式之間的關系:S扇形,把對應的數(shù)值代入即可求得半徑r的長.【詳解】解:∵S扇形,∴,∴.故答案為1.【點睛】本題考查了扇形面積和弧長公式之間的關系,解此類題目的關鍵是掌握住扇形面積公式和扇形的弧長公式之間的等量關系:S扇形.三、解答題(共78分)19、(1)y=;(2)2.【分析】(1)先求出點A的坐標,然后利用待定系數(shù)法即可求出結論;(2)先求出點C的坐標,然后求出點E的坐標,最后利用四邊形OCEA的面積=+即可得出結論.【詳解】解:(1)當x=1時,y=x﹣2=1﹣2=2,則A(1,2),把A(1,2)代入y=得k=1×2=2,∴反比例函數(shù)解析式為y=;(2)當x=0時,y=x﹣2=﹣2,則C(0,﹣2),∵AE⊥x軸于點E,∴E(1,0),∴四邊形OCEA的面積=+=×1×2+×1×2=2.【點睛】此題考查的是反比例函數(shù)與一次函數(shù)的交點問題,掌握利用待定系數(shù)法求反比例函數(shù)解析式和三角形的面積公式是解決此題的關鍵.20、(1);(2)1.【分析】(1)根據(jù)因式分解法解方程,即可得到答案;(2)分別計算絕對值,特殊角的三角函數(shù),二次根式,負整數(shù)指數(shù)冪,然后再進行合并,即可得到答案.【詳解】解:(1),∴,∴,∴;(2),.【點睛】本題考查了解一元二次方程,實數(shù)的混合運算,解題的關鍵是掌握解一元二次方程的方法,以及實數(shù)混合運算的運算法則.21、(1)見解析;(2);(1)或【分析】(1)連接AO并且延長交圓于,連接AO并且延長交圓于,即可求解;
(2)根據(jù)MN為⊙的切線,應用勾股定理得,所以OM最小時,MN最?。桓鶕?jù)垂線段最短,得到當M和BC中點重合時,OM最小為,此時根據(jù)勾股定理求解DE,DE和MN重合,即為所求;
(1)根據(jù)“智慧三角形”的定義可得為直角三角形,根據(jù)題意可得一條直角邊為1,當寫斜邊最短時,另一條直角邊最短,則面積取得最小值,由垂線段最短可得斜邊最短為1,根據(jù)勾股定理可求得另一條直角邊,再根據(jù)三角形面積可求得斜邊的高,即點P的橫坐標,再根據(jù)勾股定理可求點P的縱坐標,從而求解.【詳解】(1)如圖1,點和均為所求理由:連接、并延長,分別交于點、,連接、,∵是的直徑,∴,∴是“智慧三角形”同理可得,也是“智慧三角形”(2)∵是的切線,∴,∴,∴當最小時,最小,即當時,取得最小值,如圖2,作于點,過點作的一條切線,切點為,連接,∵是等邊三角形,,∴,,∴,∵是的一條切線,∴,,∴,當點與重合時,與重合,此時.(1)由“智慧三角形”的定義可得為直角三角形,根據(jù)題意,得一條直角邊.∴當最小時,的面積最小,即最小時.如圖1,由垂線段最短,可得的最小值為1.∴.過作軸,∵,∴.在中,,故符合要求的點坐標為或.【點睛】本題考查了圓與勾股定理的綜合應用,掌握圓的相關知識,熟練應用勾股定理,明確“智慧三角形”的定義是解題的關鍵.22、(1)2;(2)見解析;(3)是,定值為8【分析】(1)運用勾股定理直接計算即可;(2)過作于點,過作于點,即可得到,然后判斷,得到,則有即可;(3)同(2)的方法證出得到,得出即可.【詳解】解:(1),∴AC的長為2;(2)如圖所示,過作于點,過作于點,正方形,,,,且,四邊形為正方形,四邊形是矩形,,,,又,在和中,,,,矩形為正方形,(3)的值為定值,理由如下:矩形為正方形,,,四邊形是正方形,,,,在和中,,,,,是定值.【點睛】此題是四邊形綜合題,主要考查了正方形的性質,矩形的性質與判定,三角形的全等的性質和判定,勾股定理的綜合運用,解本題的關鍵是作出輔助線,構造三角形全等,利用全等三角形的對應邊相等得出結論。23、(1)見解析;(2)α=15°【分析】(1)利用四邊形AB′C′D′是菱形,得到AB′=B′C′=C′D′=AD′,根據(jù)∠B′AD′=∠B′C′D′=60°,可得△AB′D′,△B′C′D′是等邊三角形,進而得到△C′MN是等邊三角形,則有C′M=C′N,MB′=ND′,利用SAS即可證明△AB′M≌△AD′N;(2)由(1)得∠B′AM=∠D′AN,利用∠CAD=∠BAD=30°,即可解決問題.【詳解】(1)∵四邊形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等邊三角形,∵MN∥B′C′,∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,∴△C′MN是等邊三角形,∴C′M=C′N,∴MB′=ND′,∵∠AB′M=∠AD′N=120°,AB′=AD′,∴△AB′M≌△AD′N(SAS),(2)由△AB′M≌△AD′N得:∠B′AM=∠D′AN,∵∠CAD=∠BAD=30°,∴∠D′AN=∠B′AM=15°,∴α=15°【點睛】本題考查旋轉的性質,等邊三角形的判定和性質,菱形的性質等知識,解題的關鍵是正確尋找全等三角形解決問題.24、(1)b=2,c=3,C點坐標為(-1,0);(2)①;②【分析】(1)由一次函數(shù)求出點A、B坐標,代入拋物線解析式可求出b、c的值,令y=0可求出點C的坐標;(2)①由題意可知P(t,0),D(t,)、E(t,-t+3),然后表示出DE,利用二次函數(shù)的最值即可求出DE最大值;②分別用t表示出AP、EP、AE、DE、EF、BF,然后分類討論相似的兩種情況,或,列式求解即可.【詳解】解:(1)在中令x=0,得y=3,令y=0,得x=3,∴A(3,0),B(0,3),把A(3,0),B(0,3)代入y=﹣x2+bx+c中,得:,解得,∴拋物線的解析式為y=﹣x2+2x+3,令y=0則0=﹣x2+2x+3,解得,∴C點坐標為(-1,0);(2)①由題知P(t,0),D(t,)、E(t,-t+3);∴DE=()-()∴當時,DE長度最大,最大值為;②∴A(3,0),B(0,3),∴OA=OB,∴∠BAO=45°,在Rt△PAE中,∠PAE=45°,;在Rt△DEF中,∠DEF=45°,;∴若△BDF∽△CBO相似,則,即:,解得:(舍去);,若△BDF∽△BCO相似,則,即:,解得:(舍去);,;綜上,或時,△BOC與△BDF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人造板面裝飾板項目可行性研究報告
- 分期車購買合同范本
- 中介租房合同范本簡約
- 農藥包裝合同范例
- 事業(yè)干部解聘合同范例
- 串聯(lián)積木專利合同范例
- 養(yǎng)殖場租賃培訓合同范例
- 2025年諸葛亮家酒項目投資可行性研究分析報告
- 2025年分散熒光黃項目可行性研究報告
- 電商平臺戰(zhàn)略合作合同范本
- 島津氣相色譜培訓
- 2024年03月四川農村商業(yè)聯(lián)合銀行信息科技部2024年校園招考300名工作人員筆試歷年參考題庫附帶答案詳解
- 睡眠專業(yè)知識培訓課件
- 臨床思維能力培養(yǎng)
- 人教版高中物理必修第三冊第十章靜電場中的能量10-1電勢能和電勢練習含答案
- 《工程勘察設計收費標準》(2002年修訂本)
- 中國宗教文化 中國古代宗教文化的特點及現(xiàn)代意義
- 2024年四川省巴中市級事業(yè)單位選聘15人歷年高頻難、易錯點練習500題附帶答案詳解
- 演出經紀人培訓
- 蓋房四鄰簽字協(xié)議書范文
- 2024年新人教版七年級上冊數(shù)學教學課件 第六章 幾何圖形初步 數(shù)學活動
評論
0/150
提交評論