2023屆商洛市重點中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
2023屆商洛市重點中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
2023屆商洛市重點中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
2023屆商洛市重點中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
2023屆商洛市重點中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.一個幾何體的三視圖如圖所示,則這個幾何體是()A.球體 B.圓錐 C.棱柱 D.圓柱2.如圖是二次函數(shù)的部分圖象,則的解的情況為()A.有唯一解 B.有兩個解 C.無解 D.無法確定3.二次函數(shù)的圖象如右圖所示,那么一次函數(shù)的圖象大致是()A. B.C. D.4.下列運算正確的是()A.5m+2m=7m2B.﹣2m2?m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a25.如圖,在△ABC與△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,連接BD、CE,若AC︰BC=3︰4,則BD︰CE為()A.5︰3 B.4︰3 C.︰2 D.2︰6.下列語句中正確的是()A.長度相等的兩條弧是等弧B.平分弦的直徑垂直于弦C.相等的圓心角所對的弧相等D.經(jīng)過圓心的每一條直線都是圓的對稱軸7.下列運算正確的是()A.a(chǎn)?a1=a B.(2a)3=6a3 C.a(chǎn)6÷a2=a3 D.2a2﹣a2=a28.一根水平放置的圓柱形輸水管橫截面積如圖所示,其中有水部分水面寬8米,最深處水深2米,則此輸水管道的半徑是()A.4米 B.5米 C.6米 D.8米9.若二次函數(shù)的圖象經(jīng)過點P

(-1,2),則該圖象必經(jīng)過點()A.(1,2) B.(-1,-2) C.(-2,1) D.(2,-1)10.一個盒子裝有紅、黃、白球分別為2、3、5個,這些球除顏色外都相同,從袋中任抽一個球,則抽到黃球的概率是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在平面直角坐標(biāo)系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(shù)(k≠0,x>0)的圖象過點B,E,若AB=2,則k的值為________.12.如圖,在矩形ABCD中,AB=4,BC=8,將矩形沿對角線BD折疊,使點C落在點E處,BE交AD于點F,則BF的長為________.13.若某斜面的坡度為,則該坡面的坡角為______.14.已知二次根式有意義,則滿足條件的的最大值是______.15.如果是一元二次方程的一個根,那么的值是__________.16.已知反比例函數(shù)的圖象經(jīng)過點P(a+1,4),則a=_________________.17.已知點A關(guān)于原點的對稱點坐標(biāo)為(﹣1,2),則點A關(guān)于x軸的對稱點的坐標(biāo)為_________18.如圖,AB是⊙O的直徑,弦BC=2cm,F(xiàn)是弦BC的中點,∠ABC=60°.若動點E以2cm/s的速度從A點出發(fā)沿著A?B?A方向運動,設(shè)運動時間為t(s)(0≤t<3),連接EF,當(dāng)t為_____s時,△BEF是直角三角形.三、解答題(共66分)19.(10分)如圖,直線y=x﹣3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=﹣x2+mx+n與x軸的另一個交點為A,頂點為P.(1)求3m+n的值;(2)在該拋物線的對稱軸上是否存在點Q,使以C,P,Q為頂點的三角形為等腰三角形?若存在,求出有符合條件的點Q的坐標(biāo);若不存在,請說明理由.(3)將該拋物線在x軸上方的部分沿x軸向下翻折,圖象的其余部分保持不變,翻折后的圖象與原圖象x軸下方的部分組成一個“M“形狀的新圖象,若直線y=x+b與該“M”形狀的圖象部分恰好有三個公共點,求b的值.20.(6分)計算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣121.(6分)如圖①拋物線y=ax2+bx+4(a≠0)與x軸,y軸分別交于點A(﹣1,0),B(4,0),點C三點.(1)試求拋物線的解析式;(2)點D(3,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側(cè)的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標(biāo);如果不存在,請說明理由;(3)點N在拋物線的對稱軸上,點M在拋物線上,當(dāng)以M、N、B、C為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標(biāo).22.(8分)隨著國家“惠民政策”的陸續(xù)出臺,為了切實讓老百姓得到實惠,國家衛(wèi)計委通過嚴(yán)打藥品銷售環(huán)節(jié)中的不正當(dāng)行為,某種藥品原價200元/瓶,經(jīng)過連續(xù)兩次降價后,現(xiàn)僅賣98元/瓶,現(xiàn)假定兩次降價的百分率相同,求該種藥品平均每次降價的百分率.23.(8分)如圖,在平面直角坐標(biāo)系中,將一個圖形繞原點順時針方向旋轉(zhuǎn)稱為一次“直角旋轉(zhuǎn),已知的三個頂點的坐標(biāo)分別為,,,完成下列任務(wù):(1)畫出經(jīng)過一次直角旋轉(zhuǎn)后得到的;(2)若點是內(nèi)部的任意一點,將連續(xù)做次“直角旋轉(zhuǎn)”(為正整數(shù)),點的對應(yīng)點的坐標(biāo)為,則的最小值為;此時,與的位置關(guān)系為.(3)求出點旋轉(zhuǎn)到點所經(jīng)過的路徑長.24.(8分)已知:如圖,拋物線y=ax2+bx+3與坐標(biāo)軸分別交于點A,B(﹣3,0),C(1,0),點P是線段AB上方拋物線上的一個動點.(1)求拋物線解析式;(2)當(dāng)點P運動到什么位置時,△PAB的面積最大?(3)過點P作x軸的垂線,交線段AB于點D,再過點P作PE∥x軸交拋物線于點E,連接DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求點P的坐標(biāo);若不存在,說明理由.25.(10分)(1)解方程:(2)如圖,正六邊形的邊長為2,以點為圓心,長為半徑畫弧,求弧的長.26.(10分)如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B.(1)求證:AD是⊙O的切線.(2)若BC=8,tanB=,求CD的長.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】試題分析:觀察可知,這個幾何體的俯視圖為圓,主視圖與左視圖都是矩形,所以這個幾何體是圓柱,故答案選D.考點:幾何體的三視圖.2、C【分析】根據(jù)圖象可知拋物線頂點的縱坐標(biāo)為-3,把方程轉(zhuǎn)化為,利用數(shù)形結(jié)合求解即可.【詳解】根據(jù)圖象可知拋物線頂點的縱坐標(biāo)為-3,把轉(zhuǎn)化為拋物線開口向下有最小值為-3∴(-3)>(-4)即方程與拋物線沒有交點.即方程無解.故選C.【點睛】本題考查了數(shù)形結(jié)合的思想,由題意知道拋物線的最小值為-3是解題的關(guān)鍵.3、D【分析】可先根據(jù)二次函數(shù)的圖象判斷a、b的符號,再判斷一次函數(shù)圖象與實際是否相符,判斷正誤.【詳解】解:由二次函數(shù)圖象,得出a>0,,b<0,

A、由一次函數(shù)圖象,得a<0,b>0,故A錯誤;

B、由一次函數(shù)圖象,得a>0,b>0,故B錯誤;

C、由一次函數(shù)圖象,得a<0,b<0,故C錯誤;

D、由一次函數(shù)圖象,得a>0,b<0,故D正確.

故選:D.【點睛】本題考查了二次函數(shù)圖象,應(yīng)該熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì):開口方向、對稱軸、頂點坐標(biāo)等.4、C【解析】試題分析:選項A,根據(jù)合并同類項法則可得5m+2m=(5+2)m=7m,錯誤;選項B,依據(jù)單項式乘單項式法則可得﹣2m2?m3=﹣2m5,錯誤;選項C,根據(jù)積的乘方法則可得(﹣a2b)3=﹣a6b3,正確;選項D,根據(jù)平方差公式可得(b+2a)(2a﹣b)=(2a+b)(2a﹣b)=4a2﹣b2,錯誤.故答案選C.考點:冪的乘方與積的乘方;合并同類項;單項式乘單項式;平方差公式.5、A【解析】因為∠ACB=90°,AC︰BC=3︰4,則因為∠ACB=∠AED=90°,∠ABC=∠ADE,得△ABC△ADE,得,,則,.故選A.6、D【解析】分析:根據(jù)垂徑定理及逆定理以及圓的性質(zhì)來進行判定分析即可得出答案.詳解:A、在同圓或等圓中,長度相等的兩條弧是等弧;B、平分弦(不是直徑)的直徑垂直于弦;C、在同圓或等圓中,相等的圓心角所對的弧相等;D、經(jīng)過圓心的每一條直線都是圓的對稱軸;故選D.點睛:本題主要考查的是圓的一些基本性質(zhì),屬于基礎(chǔ)題型.理解圓的性質(zhì)是解決這個問題的關(guān)鍵.7、D【分析】根據(jù)同底數(shù)冪的乘法法則,積的乘方運算法則,同底數(shù)冪的除法法則以及合并同類項法則逐一判斷即可.【詳解】A.a(chǎn)?a1=a2,故本選項不合題意;B.(2a)3=8a3,故本選項不合題意;C.a(chǎn)6÷a2=a4,故本選項不合題意;D.2a2﹣a2=a2,正確,故本選項符合題意.故選:D.【點睛】本題考查的是冪的運算,比較簡單,需要牢記冪的運算公式.8、B【詳解】解:∵OC⊥AB,AB=8米,∴AD=BD=4米,設(shè)輸水管的半徑是r,則OD=r﹣2,在Rt△AOD中,∵OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=1.故選B.【點睛】本題考查垂徑定理的應(yīng)用;勾股定理.9、A【分析】先確定出二次函數(shù)圖象的對稱軸為y軸,再根據(jù)二次函數(shù)的對稱性解答.【詳解】解:∵二次函數(shù)y=ax2的對稱軸為y軸,

∴若圖象經(jīng)過點P(-1,2),

則該圖象必經(jīng)過點(1,2).

故選:A.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,主要利用了二次函數(shù)圖象的對稱性,確定出函數(shù)圖象的對稱軸為y軸是解題的關(guān)鍵.10、D【分析】用黃球的個數(shù)除以球的總數(shù)即為摸到黃球的概率.【詳解】∵布袋中裝有紅、黃、白球分別為2、3、5個,共10個球,從袋中任意摸出一個球共有10種結(jié)果,其中出現(xiàn)黃球的情況有3種可能,∴得到黃球的概率是:.故選:D.【點睛】本題考查隨機事件概率的求法:如果一個事件有m種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)n種結(jié)果,那么事件A的概率P(A)=.二、填空題(每小題3分,共24分)11、【詳解】解:設(shè)E(x,x),∴B(2,x+2),∵反比例函數(shù)(k≠0,x>0)的圖象過點B.E.∴x2=2(x+2),,(舍去),,故答案為12、5【解析】由翻折的性質(zhì)可以知道,由矩形的性質(zhì)可以知道:,從而得到,于是,故此BF=DF,在中利用勾股定理可求得BF的長.【詳解】由折疊的性質(zhì)知,CD=ED,BE=BC.

四邊形ABCD是矩形,

在和中,

,

,

;

設(shè)BF=x,則DF=x,AF=8-x,

在中,可得:,即,

計算得出:x=5,

故BF的長為5.

因此,本題正確答案是:5【點睛】本題考查了折疊的性質(zhì)折疊前后兩圖形全等,即對應(yīng)線段相等,對應(yīng)角相等,也考查了勾股定理,矩形的性質(zhì).13、30°【分析】根據(jù)坡度與坡比之間的關(guān)系即可得出答案.【詳解】∵∴坡面的坡角為故答案為:【點睛】本題主要考查坡度與坡角,掌握坡度與坡角之間的關(guān)系是解題的關(guān)鍵.14、【分析】先根據(jù)二次根式有意義的條件列出關(guān)于x的不等式,求出x的取值范圍即可求出x的最大值【詳解】∵二次根式有意義;∴3-4x≥0,解得x≤,∴x的最大值為;故答案為.【點睛】本題考查的是二次根式有意義的條件,熟知二次根式中的被開方數(shù)是非負(fù)數(shù)是解答此題的關(guān)鍵.15、6【分析】根據(jù)是一元二次方程的一個根可得m2-3m=2,把變形后,把m2-3m=2代入即可得答案.【詳解】∵是一元二次方程的一個根,∴m2-3m=2,∴=2(m2-3m)+2=2×2+2=6,故答案為:6【點睛】本題考查一元二次方程的解的定義,熟練掌握定義并正確變形是解題關(guān)鍵.16、-3【分析】直接將點P(a+1,4)代入求出a即可.【詳解】直接將點P(a+1,4)代入,則,解得a=-3.【點睛】本題主要考查反比例函數(shù)圖象上點的坐標(biāo)特征,熟練掌握反比例函數(shù)知識和計算準(zhǔn)確性是解決本題的關(guān)鍵,難度較小.17、(1,2)【分析】利用平面內(nèi)兩點關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù),求出點A的坐標(biāo),再利用平面內(nèi)兩點關(guān)于x軸對稱時:橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),求出A點關(guān)于x軸的對稱點的坐標(biāo).【詳解】解:∵點A關(guān)于原點的對稱點的坐標(biāo)是(-1,2),∴點A的坐標(biāo)是(1,-2),∴點A關(guān)于x軸的對稱點的坐標(biāo)是(1,2),故答案為:(1,2).【點睛】本題考查的知識點是關(guān)于原點對稱的點的坐標(biāo);關(guān)于x軸、y軸對稱的點的坐標(biāo).解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:(1)關(guān)于x軸對稱的點,橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);(2)關(guān)于y軸對稱的點,縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù);(3)關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).18、1或1.75或2.25s【解析】試題分析:∵AB是⊙O的直徑,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.則當(dāng)0≤t<3時,即點E從A到B再到O(此時和O不重合).若△BEF是直角三角形,則當(dāng)∠BFE=90°時,根據(jù)垂徑定理,知點E與點O重合,即t=1;當(dāng)∠BEF=90°時,則BE=BF=,此時點E走過的路程是或,則運動時間是s或s.故答案是t=1或或.考點:圓周角定理.三、解答題(共66分)19、(1)9;(2)點Q的坐標(biāo)為(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)b=﹣3或﹣.【分析】(1)求出B、C的坐標(biāo),將點B、C的坐標(biāo)分別代入拋物線表達式,即可求解;(2)分CP=PQ、CP=CQ、CQ=PQ,分別求解即可;(3)分兩種情況,分別求解即可.【詳解】解:(1)直線y=x﹣3,令y=0,則x=3,令x=0,則y=﹣3,故點B、C的坐標(biāo)分別為(3,0)、(0,﹣3),將點B、C的坐標(biāo)分別代入拋物線表達式得:,解得:,則拋物線的表達式為:y=﹣x2+4x﹣3,則點A坐標(biāo)為(1,0),頂點P的坐標(biāo)為(2,1),3m+n=12﹣3=9;(2)①當(dāng)CP=CQ時,C點縱坐標(biāo)為PQ中點的縱坐標(biāo)相同為﹣3,故此時Q點坐標(biāo)為(2,﹣7);②當(dāng)CP=PQ時,∵PC=,∴點Q的坐標(biāo)為(2,1﹣)或(2,1+);③當(dāng)CQ=PQ時,過該中點與CP垂直的直線方程為:y=﹣x﹣,當(dāng)x=2時,y=﹣,即點Q的坐標(biāo)為(2,﹣);故:點Q的坐標(biāo)為(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)圖象翻折后的點P對應(yīng)點P′的坐標(biāo)為(2,﹣1),①在如圖所示的位置時,直線y=x+b與該“M”形狀的圖象部分恰好有三個公共點,此時C、P′、B三點共線,b=﹣3;②當(dāng)直線y=x+b與翻折后的圖象只有一個交點時,此時,直線y=x+b與該“M”形狀的圖象部分恰好有三個公共點;即:x2﹣4x+3=x+b,△=52﹣4(3﹣b)=0,解得:b=﹣.即:b=﹣3或﹣.【點睛】本題考查的是二次函數(shù)綜合運用,涉及的知識點有待定系數(shù)法求二次函數(shù)解析式,一次函數(shù)的圖像與性質(zhì),勾股定理,等腰三角形的定義,二次函數(shù)的翻折變換及二次函數(shù)與一元二次方程的關(guān)系.難點在于(3),關(guān)鍵是通過數(shù)形變換,確定變換后圖形與直線的位置關(guān)系,難度較大.本題也考查了分類討論及數(shù)形結(jié)合的數(shù)學(xué)思想.20、1【分析】根據(jù)特殊角的三角函數(shù)值、零指數(shù)冪的運算法則、負(fù)整數(shù)指數(shù)冪的運算法則、絕對值的性質(zhì)進行化簡,計算即可.【詳解】原式=1×+3﹣+1﹣1=1.【點睛】此題主要考查了實數(shù)的運算,要熟練掌握,解答此題的關(guān)鍵是要明確:在進行實數(shù)運算時,和有理數(shù)運算一樣,要從高級到低級,即先算乘方、開方,再算乘除,最后算加減,有括號的要先算括號里面的,同級運算要按照從左到右的順序進行.另外,有理數(shù)的運算律在實數(shù)范圍內(nèi)仍然適用.21、(2)y=﹣x2+3x+2;(2)存在.P(﹣,).(3)【分析】(2)將A,B,C三點代入y=ax2+bx+2求出a,b,c值,即可確定表達式;(2)在y軸上取點G,使CG=CD=3,構(gòu)建△DCB≌△GCB,求直線BG的解析式,再求直線BG與拋物線交點坐標(biāo)即為P點,(3)根據(jù)平行四邊形的對邊平行且相等,利用平移的性質(zhì)列出方程求解,分情況討論.【詳解】解:如圖:(2)∵拋物線y=ax2+bx+2(a≠0)與x軸,y軸分別交于點A(﹣2,0),B(2,0),點C三點.∴解得∴拋物線的解析式為y=﹣x2+3x+2.(2)存在.理由如下:y=﹣x2+3x+2=﹣(x﹣)2+.∵點D(3,m)在第一象限的拋物線上,∴m=2,∴D(3,2),∵C(0,2)∵OC=OB,∴∠OBC=∠OCB=25°.連接CD,∴CD∥x軸,∴∠DCB=∠OBC=25°,∴∠DCB=∠OCB,在y軸上取點G,使CG=CD=3,再延長BG交拋物線于點P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.設(shè)直線BP解析式為yBP=kx+b(k≠0),把G(0,2),B(2,0)代入,得k=﹣,b=2,∴BP解析式為yBP=﹣x+2.yBP=﹣x+2,y=﹣x2+3x+2當(dāng)y=y(tǒng)BP時,﹣x+2=﹣x2+3x+2,解得x2=﹣,x2=2(舍去),∴y=,∴P(﹣,).(3)理由如下,如圖B(2,0),C(0,2),拋物線對稱軸為直線,設(shè)N(,n),M(m,﹣m2+3m+2)第一種情況:當(dāng)MN與BC為對邊關(guān)系時,MN∥BC,MN=BC,∴2-=0-m,∴m=∴﹣m2+3m+2=,∴;或∴0-=2-m,∴m=∴﹣m2+3m+2=,∴;第二種情況:當(dāng)MN與BC為對角線關(guān)系,MN與BC交點為K,則K(2,2),∴∴m=∴﹣m2+3m+2=∴綜上所述,當(dāng)以M、N、B、C為頂點的四邊形是平行四邊形時,點M的坐標(biāo)為.【點睛】本題考查二次函數(shù)與圖形的綜合應(yīng)用,涉及待定系數(shù)法,函數(shù)圖象交點坐標(biāo)問題,平行四邊形的性質(zhì),方程思想及分類討論思想是解答此題的關(guān)鍵.22、該種藥品平均每次降價的百分率是30%.【解析】試題分析:設(shè)該種藥品平均每場降價的百分率是x,則兩個次降價以后的價格是,據(jù)此列出方程求解即可.試題解析:設(shè)該種藥品平均每場降價的百分率是x,由題意得:解得:(不合題意舍去),=30%.答:該種藥品平均每場降價的百分率是30%.考點:一元二次方程的應(yīng)用;增長率問題.23、(1)圖見解析;(2)2,關(guān)于中心對稱;(3).【分析】(1)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)畫出旋轉(zhuǎn)后的△即可;(2)根據(jù)中心對稱的性質(zhì)即可得出結(jié)論;(3)根據(jù)弧長公式求解即可.【詳解】解:(1)如圖,△即為所求;(2)點的對應(yīng)點的坐標(biāo)為,點與關(guān)于點對稱,.故答案為:2,關(guān)于中心對稱.(3)∵點A坐標(biāo)為∴,則旋轉(zhuǎn)到點所經(jīng)過的路徑長.【點睛】本題考查了根據(jù)旋轉(zhuǎn)變換作圖以及弧長公式,解答本題的關(guān)鍵是根據(jù)網(wǎng)格結(jié)構(gòu)找出對應(yīng)點的位置.24、(1)y=﹣x2﹣2x+3(2)(﹣,)(3)存在,P(﹣2,3)或P(,)【分析】(1)用待定系數(shù)法求解;(2)過點P作PH⊥x軸于點H,交AB于點F,直線AB解析式為y=x+3,設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0),則F(t,t+3),則PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根據(jù)S△PAB=S△PAF+S△PBF寫出解析式,再求函數(shù)最大值;(3)設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0),則D(t,t+3),PD=﹣t2﹣3t,由拋物線y=﹣x2﹣2x+3=﹣(x+1)2+4,由對稱軸為直線x=﹣1,PE∥x軸交拋物線于點E,得yE=y(tǒng)P,即點E、P關(guān)于對稱軸對稱,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE為等腰直角三角形,∠DPE=90°,得PD=PE,再分情況討論:①當(dāng)﹣3<t≤﹣1時,PE=﹣2﹣2t;②當(dāng)﹣1<t<0時,PE=2+2t【詳解】解:(1)∵拋物線y=ax2+bx+3過點B(﹣3,0),C(1,0)∴解得:∴拋物線解析式為y=﹣x2﹣2x+3(2)過點P作PH⊥x軸于點H,交AB于點F∵x=0時,y=﹣x2﹣2x+3=3∴A(0,3)∴直線AB解析式為y=x+3∵點P在線段AB上方拋物線上∴設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論