2025年高考數(shù)學(xué)一輪復(fù)習(xí)(基礎(chǔ)版)課時(shí)精講第1章 §1.4 基本不等式(原卷版)_第1頁(yè)
2025年高考數(shù)學(xué)一輪復(fù)習(xí)(基礎(chǔ)版)課時(shí)精講第1章 §1.4 基本不等式(原卷版)_第2頁(yè)
2025年高考數(shù)學(xué)一輪復(fù)習(xí)(基礎(chǔ)版)課時(shí)精講第1章 §1.4 基本不等式(原卷版)_第3頁(yè)
2025年高考數(shù)學(xué)一輪復(fù)習(xí)(基礎(chǔ)版)課時(shí)精講第1章 §1.4 基本不等式(原卷版)_第4頁(yè)
2025年高考數(shù)學(xué)一輪復(fù)習(xí)(基礎(chǔ)版)課時(shí)精講第1章 §1.4 基本不等式(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第第頁(yè)§1.4基本不等式課標(biāo)要求1.了解基本不等式的推導(dǎo)過(guò)程.2.會(huì)用基本不等式解決簡(jiǎn)單的最值問(wèn)題.知識(shí)梳理1.基本不等式:eq\r(ab)≤eq\f(a+b,2)(1)基本不等式成立的條件:a>0,b>0.(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.(3)其中eq\f(a+b,2)叫做正數(shù)a,b的算術(shù)平均數(shù),eq\r(ab)叫做正數(shù)a,b的幾何平均數(shù).2.利用基本不等式求最值(1)已知x,y都是正數(shù),如果積xy等于定值P,那么當(dāng)x=y(tǒng)時(shí),和x+y有最小值2eq\r(P).(2)已知x,y都是正數(shù),如果和x+y等于定值S,那么當(dāng)x=y(tǒng)時(shí),積xy有最大值eq\f(1,4)S2.注意:利用基本不等式求最值應(yīng)滿足三個(gè)條件“一正、二定、三相等”.常用結(jié)論幾個(gè)重要的不等式(1)a2+b2≥2ab(a,b∈R).(2)eq\f(b,a)+eq\f(a,b)≥2(a,b同號(hào)).(3)ab≤(eq\f(a+b,2))2(a,b∈R).(4)eq\f(a2+b2,2)≥(eq\f(a+b,2))2(a,b∈R).以上不等式等號(hào)成立的條件均為a=b.自主診斷1.判斷下列結(jié)論是否正確.(請(qǐng)?jiān)诶ㄌ?hào)中打“√”或“×”)(1)不等式ab≤(eq\f(a+b,2))2與eq\r(ab)≤eq\f(a+b,2)等號(hào)成立的條件是相同的.()(2)y=x+eq\f(1,x)的最小值是2.()(3)若x>0,y>0且x+y=xy,則xy的最小值為4.()(4)函數(shù)y=sinx+eq\f(4,sinx),x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2)))的最小值為4.()2.若函數(shù)f(x)=x+eq\f(1,x-2)(x>2)在x=a處取最小值,則a等于()A.1+eq\r(2) B.1+eq\r(3)C.3 D.43.已知0<x<1,則x(1-x)的最大值為()A.eq\f(1,4)B.eq\f(1,8)C.eq\f(1,16)D.14.已知x>0,y>0,x+y=1,則eq\f(1,x)+eq\f(1,y)的最小值為_(kāi)_______.題型一基本不等式的理解及常見(jiàn)變形例1(1)若0<a<b,則下列不等式一定成立的是()A.b>eq\f(a+b,2)>a>eq\r(ab)B.b>eq\r(ab)>eq\f(a+b,2)>aC.b>eq\f(a+b,2)>eq\r(ab)>aD.b>a>eq\f(a+b,2)>eq\r(ab)跟蹤訓(xùn)練1(1)已知p:a>b>0,q:eq\f(a2+b2,2)>(eq\f(a+b,2))2,則p是q成立的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件(2)(多選)已知a,b∈R,則下列不等式成立的是()A.eq\f(a+b,2)≥eq\r(ab)B.eq\f(a+b,2)≤eq\r(\f(a2+b2,2))C.eq\f(2ab,a+b)≤eq\f(a+b,2)D.ab≤eq\f(a2+b2,2)題型二利用基本不等式求最值命題點(diǎn)1直接法例2(1)(多選)下列代數(shù)式中最小值為2的是()A.x-eq\f(1,x)B.2x+2-xC.x2+eq\f(1,x2)D.eq\r(x2+2)+eq\f(1,\r(x2+2))(2)已知x,y為正實(shí)數(shù),且滿足4x+3y=12,則xy的最大值為_(kāi)_______.命題點(diǎn)2配湊法例3(1)已知a,b為正數(shù),4a2+b2=7,則aeq\r(1+b2)的最大值為()A.eq\r(7)B.eq\r(3)C.2eq\r(2)D.2(2)已知x>1,則eq\f(x2+3,x-1)的最小值為()A.6B.8C.10D.12與基本不等式模型結(jié)構(gòu)相似的對(duì)勾函數(shù)模型如圖,對(duì)于函數(shù)f(x)=x+eq\f(k,x),k>0,x∈[a,b],[a,b]?(0,+∞).(1)當(dāng)eq\r(k)∈[a,b]時(shí),f(x)=x+eq\f(k,x)≥2eq\r(k),f(x)min=f(eq\r(k))=eq\r(k)+eq\f(k,\r(k))=2eq\r(k);(2)當(dāng)eq\r(k)<a時(shí),f(x)=x+eq\f(k,x)在區(qū)間[a,b]上單調(diào)遞增,f(x)min=f(a)=a+eq\f(k,a);(3)當(dāng)eq\r(k)>b時(shí),f(x)=x+eq\f(k,x)在區(qū)間[a,b]上單調(diào)遞減,f(x)min=f(b)=b+eq\f(k,b).因此,只有當(dāng)eq\r(k)∈[a,b]時(shí),才能使用基本不等式求最值,而當(dāng)eq\r(k)?[a,b]時(shí)只能利用對(duì)勾函數(shù)的單調(diào)性求最值.典例函數(shù)f(x)=x2+eq\f(3,x2+2)的最小值是______.命題點(diǎn)3代換法例4(1)已知正數(shù)a,b滿足eq\f(8,b)+eq\f(4,a)=1,則8a+b的最小值為()A.54B.56C.72D.81延伸探究已知正數(shù)a,b滿足8a+4b=ab,則8a+b的最小值為_(kāi)_______.(2)已知正數(shù)a,b滿足a+2b=3恒成立,則eq\f(1,a+1)+eq\f(2,b)的最小值為()A.eq\f(3,2)B.eq\f(9,4)C.2D.3命題點(diǎn)4消元法例5已知正數(shù)a,b滿足a2-2ab+4=0,則b-eq\f(a,4)的最小值為()A.1B.eq\r(2)C.2D.2eq\r(2)命題點(diǎn)5構(gòu)造不等式法例6若a>0,b>0,且ab=a+b+3,則ab的最小值為()A.9B.6C.3D.12跟蹤訓(xùn)練2(1)(多選)下列四個(gè)函數(shù)中,最小值為2的是()A.y=sinx+eq\f(1,sinx)(0<x≤eq\f(π,2))B.y=2-x-eq\f(4,x)(x<0)C.y=eq\f(x2+6,\r(x2+5))D.y=4x+4-x(2)(多選)已知正實(shí)數(shù)a,b滿足ab+a+b=8,下列說(shuō)法正確的是()A.ab的最大值為2B.a+b的最小值為4C.a+2b的最小值為6eq\r(2)-3D.eq\f(1,ab+1)+eq\f(1,b)的最小值為eq\f(1,2)

課時(shí)精練一、單項(xiàng)選擇題1.已知m>0,n>0,mn=81,則m+n的最小值是()A.9B.18C.9eq\r(3)D.272.已知a>0,b>0,且eq\f(1,a)+eq\f(1,b)=1,則4a+9b的最小值是()A.23B.26C.22D.253.若正數(shù)x,y滿足x+3y=5xy,則3x+4y的最小值是()A.2B.3C.4D.54.“?x∈(1,4],不等式x2-mx+m>0恒成立”的充分不必要條件是()A.m>4B.m<eq\f(16,3)C.m<4D.m<25.若x>0,y>0,x+3y=1,則eq\f(xy,3x+y)的最大值為()A.eq\f(1,9)B.eq\f(1,12)C.eq\f(1,16)D.eq\f(1,20)二、多項(xiàng)選擇題6.已知x,y是正數(shù),且x+y=2,則()A.x(x+2y)的最大值為4B.log2x+log2y的最大值為0C.2x+2y的最小值為4D.eq\f(1,x)+eq\f(2,y)的最小值為eq\f(3,2)+eq\r(2)7.若x,y滿足x2+y2-xy=1,則()A.x+y≤1 B.x+y≥-2C.x2+y2≤2 D.x2+y2≥1三、填空題8.若x<2,則

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論