廣西壯族自治區(qū)河池市2022-2023學年九年級數(shù)學第一學期期末預測試題含解析_第1頁
廣西壯族自治區(qū)河池市2022-2023學年九年級數(shù)學第一學期期末預測試題含解析_第2頁
廣西壯族自治區(qū)河池市2022-2023學年九年級數(shù)學第一學期期末預測試題含解析_第3頁
廣西壯族自治區(qū)河池市2022-2023學年九年級數(shù)學第一學期期末預測試題含解析_第4頁
廣西壯族自治區(qū)河池市2022-2023學年九年級數(shù)學第一學期期末預測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在□ABCD中,R為BC延長線上的點,連接AR交BD于點P,若CR:AD=2:3,則AP:PR的值為()A.3:5 B.2:3 C.3:4 D.3:22.四條線段成比例,其中=3,,,則等于(

)A.2㎝ B.㎝ C. D.8㎝3.二次函數(shù)y=ax2+bx+c(a≠0,a、b、c為常數(shù))的圖象如圖所示,則方程ax2+bx+c=m有實數(shù)根的條件是()A.m≥﹣4 B.m≥0 C.m≥5 D.m≥64.一元二次方程x2﹣x﹣2=0的解是()A.x1=﹣1,x2=﹣2B.x1=1,x2=﹣2C.x1=1,x2=2D.x1=﹣1,x2=25.在△ABC中,D是AB中點,E是AC中點,若△ADE的面積是3,則△ABC的面積是()A.3 B.6 C.9 D.126.在某中學的迎國慶聯(lián)歡會上有一個小嘉賓抽獎的環(huán)節(jié),主持人把分別寫有“我”、“愛”、“祖”、“國”四個字的四張卡片分別裝入四個外形相同的小盒子并密封起來,由主持人隨機地弄亂這四個盒子的順序,然后請出抽獎的小嘉賓,讓他在四個小盒子的外邊也分別寫上“我”、“愛”、“祖”、“國”四個字,最后由主持人打開小盒子取出卡片,如果每一個盒子上面寫的字和里面小卡片上面寫的字都不相同就算失敗,其余的情況就算中獎,那么小嘉賓中獎的概率為()A. B. C. D.7.某藥品經(jīng)過兩次降價,每瓶零售價由112元降為63元.已知兩次降價的百分率相同.要求每次降價的百分率,若設每次降價的百分率為x,則得到的方程為()A.112(1﹣x)2=63B.112(1+x)2=63C.112(1﹣x)=63D.112(1+x)=638.點A(﹣5,4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.某商店以每件60元的價格購進一批貨物,零售價為每件80元時,可以賣出100件(按相關規(guī)定零售價不能超過80元).如果零售價在80元的基礎上每降價1元,可以多賣出10件,當零售價在80元的基礎上降價x元時,能獲得2160元的利潤,根據(jù)題意,可列方程為()A.x(100+10x)=2160 B.(20﹣x)(100+10x)=2160C.(20+x)(100+10x)=2160 D.(20﹣x)(100﹣10x)=216010.如圖,在△ABC中,過點A作射線AD∥BC,點D不與點A重合,且AD≠BC,連結BD交AC于點O,連結CD,設△ABO、△ADO、△CDO和△BCO的面積分別為S1、S2、SA.S1=C.S1+11.下列命題正確的是()A.矩形的對角線互相垂直平分B.一組對角相等,一組對邊平行的四邊形一定是平行四邊形C.正八邊形每個內(nèi)角都是D.三角形三邊垂直平分線交點到三角形三邊距離相等12.2020的相反數(shù)是()A. B. C.-2020 D.2020二、填空題(每題4分,共24分)13.拋物線y=﹣x2+bx+c的部分圖象如圖所示,已知關于x的一元二次方程﹣x2+bx+c=0的一個解為x1=1,則該方程的另一個解為x2=_____.14.寫出一個二次函數(shù)關系式,使其圖象開口向上_______.15.計算:__________.16.如圖,在ABCD中,點E是AD邊上一點,AE:ED=1:2,連接AC、BE交于點F.若S△AEF=1,則S四邊形CDEF=_______.17.已知扇形的圓心角為,所對的弧長為,則此扇形的面積是________.18.如圖,將繞點逆時針旋轉,得到,這時點恰好在同一直線上,則的度數(shù)為______.三、解答題(共78分)19.(8分)已知:中,.(1)求作:的外接圓;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)若的外接圓的圓心到邊的距離為4,,求的面積.20.(8分)閱讀以下材料,并按要求完成相應地任務:萊昂哈德·歐拉(LeonhardEuler)是瑞士數(shù)學家,在數(shù)學上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個定理:在△ABC中,R和r分別為外接圓和內(nèi)切圓的半徑,O和I分別為其外心和內(nèi)心,則.如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙I與AB相切分于點F,設⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點)與內(nèi)心I(三角形三條角平分線的交點)之間的距離OI=d,則有d2=R2﹣2Rr.下面是該定理的證明過程(部分):延長AI交⊙O于點D,過點I作⊙O的直徑MN,連接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等),∴△MDI∽△ANI,∴,∴①,如圖2,在圖1(隱去MD,AN)的基礎上作⊙O的直徑DE,連接BE,BD,BI,IF,∵DE是⊙O的直徑,∴∠DBE=90°,∵⊙I與AB相切于點F,∴∠AFI=90°,∴∠DBE=∠IFA,∵∠BAD=∠E(同弧所對圓周角相等),∴△AIF∽△EDB,∴,∴②,任務:(1)觀察發(fā)現(xiàn):,(用含R,d的代數(shù)式表示);(2)請判斷BD和ID的數(shù)量關系,并說明理由;(3)請觀察式子①和式子②,并利用任務(1),(2)的結論,按照上面的證明思路,完成該定理證明的剩余部分;(4)應用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為cm.21.(8分)如圖,直線y=﹣x+2與反比例函數(shù)(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.(1)求a,b的值及反比例函數(shù)的解析式;(2)若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標;(3)在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.22.(10分)已知在平面直角坐標系中,一次函數(shù)y=x+b的圖象與反比例函數(shù)y=的圖象交于點A(1,m)和點B(-2,-1).(1)求k,b的值;(2)連結OA,OB,求△AOB的面積.23.(10分)如圖,直線與軸交于點,與軸交于點,把沿軸對折,點落到點處,過點、的拋物線與直線交于點、.(1)求直線和拋物線的解析式;(2)在直線上方的拋物線上求一點,使面積最大,求出點坐標;(3)在第一象限內(nèi)的拋物線上,是否存在一點,作垂直于軸,垂足為點,使得以、、為項點的三角形與相似?若存在,求出點的坐標:若不存在,請說明理由.24.(10分)現(xiàn)有甲、乙、丙三名學生參加學校演講比賽,并通過抽簽確定三人演講的先后順序.(1)求甲第一個演講的概率;(2)畫樹狀圖或表格,求丙比甲先演講的概率.25.(12分)已知:如圖,在Rt△ABC中,∠ACB=90°,BC="3",tan∠BAC=,將∠ABC對折,使點C的對應點H恰好落在直線AB上,折痕交AC于點O,以點O為坐標原點,AC所在直線為x軸建立平面直角坐標系(1)求過A、B、O三點的拋物線解析式;(2)若在線段AB上有一動點P,過P點作x軸的垂線,交拋物線于M,設PM的長度等于d,試探究d有無最大值,如果有,請求出最大值,如果沒有,請說明理由.(3)若在拋物線上有一點E,在對稱軸上有一點F,且以O、A、E、F為頂點的四邊形為平行四邊形,試求出點E的坐標.26.解方程(1)x2+4x﹣3=0(用配方法)(2)3x(2x+3)=4x+6

參考答案一、選擇題(每題4分,共48分)1、A【分析】證得△ADP∽△RBP,可得,由AD=BC,可得.【詳解】∵在?ABCD中,AD∥BC,且AD=BC,∴△ADP∽△RBP,∴,∴.∴=.故選:A.【點睛】此題主要考查相似三角形的判定與性質,解題的關鍵是熟知相似三角形的對應線段成比例.2、A【分析】四條線段a,b,c,d成比例,則=,代入即可求得b的值.【詳解】解:∵四條線段a,b,c,d成比例,

∴=,

∴b===2(cm).

故選A.【點睛】本題考查成比例線段,解題關鍵是正確理解四條線段a,b,c,d成比例的定義.3、A【解析】利用函數(shù)圖象,當m≥﹣1時,直線y=m與二次函數(shù)y=ax2+bx+c有公共點,從而可判斷方程ax2+bx+c=m有實數(shù)根的條件.【詳解】∵拋物線的頂點坐標為(6,﹣1),即x=6時,二次函數(shù)有最小值為﹣1,∴當m≥﹣1時,直線y=m與二次函數(shù)y=ax2+bx+c有公共點,∴方程ax2+bx+c=m有實數(shù)根的條件是m≥﹣1.故選:A.【點睛】本題考查了圖象法求一元二次方程的近似根:作出函數(shù)的圖象,并由圖象確定方程的解的個數(shù);由圖象與y=h的交點位置確定交點橫坐標的范圍;4、D【解析】試題分析:利用因式分解法解方程即可.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故選D.考點:解一元二次方程-因式分解法.5、D【分析】根據(jù)相似三角形的性質與判定即可求出答案.【詳解】解:∵D是AB中點,E是AC中點,∴DE是△ABC的中位線,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∴S△ABC=4S△ADE=12,故選:D.【點睛】本題考查了相似三角形的面積問題,掌握相似三角形的性質與判定是解題的關鍵.6、B【分析】得出總的情況數(shù)和失敗的情況數(shù),根據(jù)概率公式計算出失敗率,從而得出中獎率.【詳解】共有4×4=16種情況,失敗的情況占3+2+1=6種,失敗率為,中獎率為.故選:B.【點睛】本題考查了利用概率公式求概率.正確得出失敗情況的總數(shù)是解答本題的關鍵.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.7、A【解析】根據(jù)題意可得等量關系:原零售價×(1-百分比)(1-百分比)=降價后的售價,然后根據(jù)等量關系列出方程即可.【詳解】設每次降價的百分率為x,由題意得:112(1?x)2=63,故答案選:A.【點睛】本題考查的知識點是由實際問題抽象出一元二次方程,解題的關鍵是熟練的掌握由實際問題抽象出一元二次方程.8、B【分析】根據(jù)象限內(nèi)點的坐標特點即可解答.【詳解】點A(﹣5,4)所在的象限是第二象限,故選:B.【點睛】此題考查象限內(nèi)點的坐標,熟記每個象限及坐標軸上點的坐標特點是解題的關鍵.9、B【分析】根據(jù)第一句已知條件可得該貨物單件利潤為元,根據(jù)第二句話的已知條件,降價幾個1元,就可以多賣出幾個10件,可得降價后利潤為元,數(shù)量為件,兩者相乘得2160元,列方程即可.【詳解】解:由題意得,當售價在80元基礎上降價元時,.【點睛】本題主要考查的是一元二次方程應用題里的利潤問題,理解掌握其中的數(shù)量關系列出方程是解答這類應用題的關鍵.10、D【解析】根據(jù)同底等高判斷△ABD和△ACD的面積相等,即可得到S1+S2=S3+S2,即【詳解】∵△ABD和△ACD同底等高,∴SS1即S△ABC和△DBC同底等高,∴S△ABC∴S故A,B,C正確,D錯誤.故選:D.【點睛】考查三角形的面積,掌握同底等高的三角形面積相等是解題的關鍵.11、B【分析】根據(jù)矩形的性質、平行四邊形的判定、多邊形的內(nèi)角和及三角形垂直平分線的性質,逐項判斷即可.【詳解】A.矩形的對角線相等且互相平分,故原命題錯誤;B.已知如圖:,,求證:四邊形ABCD是平行四邊形.證明:∵,∴,∵,∴,∴,又∵,∴四邊形ABCD是平行四邊形,∴一組對角相等,一組對邊平行的四邊形一定是平行四邊形,故原命題正確;C.正八邊形每個內(nèi)角都是:,故原命題錯誤;D.三角形三邊垂直平分線交點到三角形三個頂點的距離相等,故原命題錯誤.故選:B.【點睛】本題考查命題的判斷,明確矩形性質、平行四邊形的判定定理、多邊形內(nèi)角和公式及三角形垂直平分線的性質是解題關鍵.12、C【分析】根據(jù)相反數(shù)的定義選擇即可.【詳解】2020的相反數(shù)是-2020,故選C.【點睛】本題考查相反數(shù)的定義,注意區(qū)別倒數(shù),絕對值,負倒數(shù)等知識,掌握概念是關鍵.二、填空題(每題4分,共24分)13、﹣1【分析】函數(shù)的對稱軸為:x=-1,由拋物線與x軸交點是關于對稱軸的對稱即可得到答案.【詳解】解:函數(shù)的對稱軸為:x=-1,其中一個交點坐標為(1,0),

則另外一個交點坐標為(-1,0),

故答案為-1.【點睛】本題考查了拋物線與x軸的交點,根據(jù)函數(shù)的對稱性即可求解.14、【分析】拋物線開口向上,則二次函數(shù)解析式的二次項系數(shù)為正數(shù),據(jù)此寫二次函數(shù)解析式即可.【詳解】∵圖象開口向上,∴二次項系數(shù)大于零,∴可以是:(答案不唯一).故答案為:.【點睛】本題考察了二次函數(shù)的圖象和性質,對于二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0),當a>0時,拋物線開口向上;當a<0時,拋物線開口向下.15、【分析】先計算根號、負指數(shù)和sin30°,再運用實數(shù)的加減法運算法則計算即可得出答案.【詳解】原式=,故答案為.【點睛】本題考查的是實數(shù)的運算,中考必考題型,需要熟練掌握實數(shù)的運算法則.16、11【分析】先根據(jù)平行四邊形的性質易得,根據(jù)相似三角形的判定可得△AFE∽△CFB,再根據(jù)相似三角形的性質得到△BFC的面積,,進而得到△AFB的面積,即可得△ABC的面積,再根據(jù)平行四邊形的性質即可得解.【詳解】解:∵AE:ED=1:2,∴AE:AD=1:3,∵AD=BC,∴AE:BC=1:3,∵AD∥BC,∴△AFE∽△CFB,∴,∴,∴S△BCF=9,∵,∴S△AFB=3,∴S△ACD=S△ABC=S△BCF+S△AFB=12,∴S四邊形CDEF=S△ACD﹣S△AEF=12﹣1=11.故答案為11.【點睛】本題主要考查相似三角形的判定與性質,平行四邊形的性質等,解此題的關鍵在于熟練掌握其知識點.17、【分析】利用弧長公式列出關系式,把圓心角與弧長代入求出扇形的半徑,即可確定出扇形的面積.【詳解】設扇形所在圓的半徑為r.∵扇形的圓心角為240°,所對的弧長為,∴l(xiāng),解得:r=6,則扇形面積為rl=.故答案為:.【點睛】本題考查了扇形面積的計算,以及弧長公式,熟練掌握公式是解答本題的關鍵.18、20°【解析】先判斷出∠BAD=140°,AD=AB,再判斷出△BAD是等腰三角形,最后用三角形的內(nèi)角和定理即可得出結論.【詳解】∵將△ABC繞點A逆時針旋轉140°,得到△ADE,∴∠BAD=140°,AD=AB,∵點B,C,D恰好在同一直線上,∴△BAD是頂角為140°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°?∠BAD)=20°,故答案為:20°【點睛】此題考查旋轉的性質,等腰三角形的判定與性質,三角形內(nèi)角和定理,解題關鍵在于判斷出△BAD是等腰三角形三、解答題(共78分)19、(1)詳見解析;(2)【分析】(1)分別作出AB、BC的垂直平分線,兩條垂直平分線的交點即是圓的圓心,以O為圓心,OB為半徑作圓即可,如圖所示.(2)已知的外接圓的圓心到邊的距離為4,,利用勾股定理即可求出OB2,再根據(jù)圓的面積公式即可求解.【詳解】解:(1)如圖(2)設BC的垂直平分線交BC于點D由題意得:,在Rt中,∴【點睛】本題主要考查的是圓的外接三角形尺規(guī)作圖法和勾股定理的應用,掌握這兩個知識點是解題的關鍵.20、(1)R-d;(2)BD=ID,理由見解析;(3)見解析;(4).【解析】(1)直接觀察可得;(2)由三角形內(nèi)心的性質可得∠BAD=∠CAD,∠CBI=∠ABI,由圓周角定理可得∠DBC=∠CAD,再根據(jù)三角形外角的性質即可求得∠BID=∠DBI,繼而可證得BD=ID;(3)應用(1)(2)結論即可;(4)直接代入結論進行計算即可.【詳解】(1)∵O、I、N三點共線,∴OI+IN=ON,∴IN=ON﹣OI=R﹣d,故答案為:R﹣d;(2)BD=ID,理由如下:∵點I是△ABC的內(nèi)心,∴∠BAD=∠CAD,∠CBI=∠ABI,∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI,∴∠BID=∠DBI,∴BD=ID;(3)由(2)知:BD=ID,又,,∴DE·IF=IM·IN,∴,∴∴;(4)由(3)知:,把R=5,r=2代入得:,∵d>0,∴,故答案為:.【點睛】本題是圓綜合題,主要考查了三角形外接圓、外心和內(nèi)切圓、內(nèi)心,圓周角性質,角平分線定義,三角形外角性質等,綜合性較強,熟練掌握相關知識是解題的關鍵.21、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).【解析】(1)利用點在直線上,將點的坐標代入直線解析式中求解即可求出a,b,最后用待定系數(shù)法求出反比例函數(shù)解析式;(2)設出點P坐標,用三角形的面積公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3?n|,進而建立方程求解即可得出結論;(3)設出點M坐標,表示出MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=32,再三種情況建立方程求解即可得出結論.【詳解】(1)∵直線y=-x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵點A(-1,3)在反比例函數(shù)y=上,∴k=-1×3=-3,∴反比例函數(shù)解析式為y=;(2)設點P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=AC×|xP?xA|=×3×|n+1|,S△BDP=BD×|xB?xP|=×1×|3?n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3?n|,∴n=0或n=?3,∴P(0,2)或(?3,5);(3)設M(m,0)(m>0),∵A(?1,3),B(3,?1),∴MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=(3+1)2+(?1?3)2=32,∵△MAB是等腰三角形,∴①當MA=MB時,∴(m+1)2+9=(m?3)2+1,∴m=0,(舍)②當MA=AB時,∴(m+1)2+9=32,∴m=?1+或m=?1?(舍),∴M(?1+,0)③當MB=AB時,(m?3)2+1=32,∴m=3+或m=3?(舍),∴M(3+,0)即:滿足條件的M(?1+,0)或(3+,0).【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積的求法,等腰三角形的性質,用方程的思想解決問題是解本題的關鍵.22、(1)k=2;b=1;(2)【解析】(1)把B(-2,-1)分別代入和即可求出k,b的值;(2)直線AB與x軸交于點C,求出點C的坐標,可得OC的長,再求出點A的坐標,然后根據(jù)求解即可.【詳解】解:(1)把B(-2,-1)代入,解得,把B(-2,-1)代入,解得.(2)如圖,直線AB與x軸交于點C,把y=0代入,得x=-1,則C點坐標為(-1,0),∴OC=1.把A(1,m)代入得,∴A點坐標為A(1,2)..【點睛】本題考查了一次函數(shù)與反比例函數(shù)圖形上點的坐標特征,一次函數(shù)與坐標軸的交點,坐標與圖形,以及三角形的面積公式,運用數(shù)形結合的思想是解答本題的關鍵.23、(1);(2);(3)存在,或.【分析】(1)由直線可以求出A,B的坐標,由待定系數(shù)法就可以求出拋物線的解析式和直線BD的解析式;(2)先求得點D的坐標,作EF∥y軸交直線BD于F,設,利用三角形面積公式求得,再利用二次函數(shù)性質即可求得答案;(3)如圖1,2,分類討論,當△BOC∽△MON或△BOC∽△ONM時,由相似三角形的性質就可以求出結論;【詳解】(1)∵直線AB為,令y=0,則,令,則y=2,∴點A、B的坐標分別是:A(-1,0),B(0,2),根據(jù)對折的性質:點C的坐標是:(1,0),設直線BD解析式為,把B(0,2),C(1,0)代入,得,解得:,,∴直線BD解析式為,把A(-1,0),B(0,2)代入得,解得:,,∴拋物線的解析式為;(2)解方程組得:和,∴點D坐標為(3,-4),作EF∥y軸交直線BD于F設∴(0<<3)∴當時,三角形面積最大,此時,點的坐標為:;(3)存在.∵點B、C的坐標分別是B(0,2)、C(1,0),∴,,①如圖1所示,當△MON∽△BCO時,∴,即,∴,設,則,將代入拋物線的解析式得:解得:(不合題意,舍去),,∴點M的坐標為(1,2);②如圖2所示,當△MON∽△CBO時,∴,即,∴MN=ON,設,則M(b,b),將M(b,b)代入拋物線的解析式得:∴解得:(不合題意,舍去),,∴點M的坐標為(,),∴存在這樣的點或.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式的運用,相似三角形的性質的運用,解答時求出函數(shù)的解析式是關鍵.24、(1);(2)畫圖見解析;【分析】(1)從3個人中選一個,得甲第一個演講的概率是(2)列樹狀圖即可求得答案.【詳解】(1)甲第一個演講的概率是;(2)樹狀圖如下:共有6種等可能情況,其中丙比甲先演講的有3種,∴P(丙比甲先演講)=.【點睛】此題考查事件的概率,在確定事件的概率時通常選用樹狀圖或列表法解答.25、(1)y=;(2)當t=時,d有最大值,最大值為2;(3)在拋物線上存在三個點:E1(,-),E2(,),E3(-,),使以O、A、E、F為頂點的四邊形為平行四邊形.【解析】(1)在Rt△ABC中,根據(jù)∠BAC的正切函數(shù)可求得AC=1,再根據(jù)勾股定理求得AB,設OC=m,連接OH由對稱性知,OH=OC=m,BH=BC=3,∠BHO=∠BCO=90°,即得AH=AB-BH=2,OA=1-m.在Rt△AOH中,根據(jù)勾股定理可求得m的值,即可得到點O、A、B的坐標,根據(jù)拋物線的對稱性可設過A、B、O三點的拋物線的解析式為:y=ax(x-),再把B點坐標代入即可求得結果;(2)設直線AB的解析式為y=kx+b,根據(jù)待定系數(shù)法求得直線AB的解析式,設動點P(t,),則M(t,),先表示出d關于t的函數(shù)關系式,再根據(jù)二次函數(shù)的性質即可求得結果;(3)設拋物線y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論