版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.已知是關于的一元二次方程的解,則等于()A.1 B.-2 C.-1 D.22.已知的三邊長分別為、、,且滿足,則的形狀是().A.等邊三角形 B.等腰三角形 C.等腰直角三角形 D.直角三角形3.在同一坐標系內(nèi),一次函數(shù)與二次函數(shù)的圖象可能是A. B. C. D.4.如圖,四邊形內(nèi)接于圓,過點作于點,若,,則的長度為()A. B.6 C. D.不能確定5.下列事件中,為必然事件的是()A.購買一張彩票,中獎B.打開電視,正在播放廣告C.任意購買一張電影票,座位號恰好是“排號”D.一個袋中只裝有個黑球,從中摸出一個球是黑球6.若反比例函數(shù)(為常數(shù))的圖象在第二、四象限,則的取值范圍是()A. B.且C. D.且7.下列長度的三條線段能組成三角形的是()A.1,2,3 B.2,3,4 C.3,4,7 D.5,2,88.在中,,,若,則的長為()A. B. C. D.9.下列事件中為必然事件的是()A.打開電視機,正在播放茂名新聞 B.早晨的太陽從東方升起C.隨機擲一枚硬幣,落地后正面朝上 D.下雨后,天空出現(xiàn)彩虹10.將n個邊長都為1cm的正方形按如圖所示的方法擺放,點A1,A2,…,An分別是正方形對角線的交點,則n個正方形重疊形成的重疊部分的面積和為()A.cm2 B.cm2 C.cm2 D.()ncm2二、填空題(每小題3分,共24分)11.在一個不透明的盒子里裝有5個分別寫有數(shù)字0,1,2,3,4的小球,它們除數(shù)字不同外其余全部相同.現(xiàn)從盒子里隨機摸出一個小球(不放回),設該小球上的數(shù)字為m,再從盒子中摸出一個小球,設該小球上的數(shù)字為n,點P的坐標為,則點P落在拋物線與x軸所圍成的區(qū)域內(nèi)(含邊界)的概率是________.12.已知⊙O的直徑AB=20,弦CD⊥AB于點E,且CD=16,則AE的長為_______.13.已知扇形的圓心角為90°,弧長等于一個半徑為5cm的圓的周長,用這個扇形恰好圍成一個圓錐的側面(接縫忽略不計).則該圓錐的高為__________cm.14.如圖,用長的鋁合金條制成使窗戶的透光面積最大的矩形窗框,那么這個窗戶的最大透光面積是___________.(中間橫框所占的面積忽略不計)15.二次函數(shù)y=2(x﹣1)2+3的圖象的頂點坐標是_________16.如圖,河壩橫斷面迎水坡AB的坡比是1:(坡比是坡面的鉛直高度BC與水平寬度AC之比),壩高BC=3m,則坡面AB的長度是.17.如圖,⊙O與拋物線交于兩點,且,則⊙O的半徑等于_______.18.如圖,PA、PB是⊙O的兩條切線,點A、B為切點,點C在⊙O上,且∠ACB=55°,則∠APB=___°.三、解答題(共66分)19.(10分)如圖,,點是線段的一個三等分點,以點為圓心,為半徑的圓交于點,交于點,連接(1)求證:是的切線;(2)點為上的一動點,連接.①當時,四邊形是菱形;②當時,四邊形是矩形.20.(6分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點D,E分別是邊BC,AC的中點,連接DE,將△EDC繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.(1)問題發(fā)現(xiàn)①當時,;②當時,(2)拓展探究試判斷:當0°≤α<360°時,的大小有無變化?請僅就圖2的情況給出證明.(3)問題解決當△EDC旋轉(zhuǎn)至A、D、E三點共線時,直接寫出線段BD的長.21.(6分)我區(qū)某校組織了一次“詩詞大會”,張老師為了選拔本班學生參加,對本班全體學生詩詞的掌握情況進行了調(diào)查,并將調(diào)查結果分為了三類:A:好,B:中,C:差.請根據(jù)圖中信息,解答下列問題:(1)全班學生共有人;(2)扇形統(tǒng)計圖中,B類占的百分比為%,C類占的百分比為%;(3)將上面的條形統(tǒng)計圖補充完整;(4)小明被選中參加了比賽.比賽中有一道必答題是:從下表所示的九宮格中選取七個字組成一句詩,其答案為“便引詩情到碧霄”.小明回答該問題時,對第四個字是選“情”還是選“青”,第七個字是選“霄”還是選“宵”,都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小明回答正確的概率.情到碧霄詩青引宵便22.(8分)小明想要測量一棵樹DE的高度,他在A處測得樹頂端E的仰角為30°,他走下臺階到達C處,測得樹的頂端E的仰角是60°.已知A點離地面的高度AB=2米,∠BCA=30°,且B,C,D三點在同一直線上.求樹DE的高度;23.(8分)(1016內(nèi)蒙古包頭市)一幅長10cm、寬11cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:1.設豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm1.(1)求y與x之間的函數(shù)關系式;(1)若圖案中三條彩條所占面積是圖案面積的,求橫、豎彩條的寬度.24.(8分)探究問題:⑴方法感悟:如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.感悟解題方法,并完成下列填空:將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,點G,B,F(xiàn)在同一條直線上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠_________.又AG=AE,AF=AF∴△GAF≌_______.∴_________=EF,故DE+BF=EF.⑵方法遷移:如圖②,將沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關系,并證明你的猜想.⑶問題拓展:如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足,試猜想當∠B與∠D滿足什么關系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).25.(10分)求下列各式的值:(1)2sin30°﹣3cos60°(2)16cos245°﹣.26.(10分)若一條圓弧所在圓半徑為9,弧長為,求這條弧所對的圓心角.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】方程的解就是能使方程的左右兩邊相等的未知數(shù)的值,因而把x=-1代入方程就得到一個關于m+n的方程,就可以求出m+n的值.【詳解】將x=1代入方程式得1+m+n=0,
解得m+n=-1.
故選:C.【點睛】此題考查一元二次方程的解,解題關鍵在于把求未知系數(shù)的問題轉(zhuǎn)化為解方程的問題.2、D【分析】根據(jù)非負數(shù)性質(zhì)求出a,b,c,再根據(jù)勾股定理逆定理解析分析.【詳解】因為所以a-5=0,b-12=0,13-c=0所以a=5,b=12,c=13因為52+122=132所以a2+b2=c2所以以的三邊長分別為、、的三角形是直角三角形.故選:D【點睛】考核知識點:勾股定理逆定理.根據(jù)非負數(shù)性質(zhì)求出a,b,c是關鍵.3、C【分析】x=0,求出兩個函數(shù)圖象在y軸上相交于同一點,再根據(jù)拋物線開口方向向上確定出a>0,然后確定出一次函數(shù)圖象經(jīng)過第一三象限,從而得解.【詳解】x=0時,兩個函數(shù)的函數(shù)值y=b,
所以,兩個函數(shù)圖象與y軸相交于同一點,故B、D選項錯誤;
由A、C選項可知,拋物線開口方向向上,
所以,a>0,
所以,一次函數(shù)y=ax+b經(jīng)過第一三象限,
所以,A選項錯誤,C選項正確.
故選C.4、B【分析】首先根據(jù)圓內(nèi)接四邊形的性質(zhì)求得∠A的度數(shù),然后根據(jù)解直角三角形的方法即可求解.【詳解】∵四邊形ABCD內(nèi)接于⊙O,,∴∠A=180?120=60,∵BH⊥AD,,∴BH=AHtan60°=,故選:B.【點睛】本題考查了圓內(nèi)接四邊形及勾股定理的知識,解題的關鍵是熟知解直角三角形的方法.5、D【分析】根據(jù)必然事件的概念對各選項分析判斷即可.【詳解】解:A、購買一張彩票,有可能中獎,也有可能不中獎,是隨機事件,故A不合題意;B、打開電視,可能正在播放廣告,也可能在播放其他節(jié)目,是隨機事件,故B不合題意;C、購買電影票時,可能恰好是“7排8號”,也可能是其他位置,是隨機事件,故C不合題意;D、從只裝有5個黑球的袋子中摸出一個球,摸出的肯定是黑球,是必然事件,故D符合題意;故選D.【點睛】本題主要考查確定事件;在一定的條件下重復進行試驗時,有的事件在每次試驗中必然會發(fā)生,這樣的事件叫做必然發(fā)生的事件,簡稱必然事件.6、C【分析】根據(jù)反比例函數(shù)的性質(zhì)得1-k<0,然后解不等式即可.【詳解】根據(jù)題意得1-k<0,
解得k>1.
故選:C.【點睛】此題考查反比例函數(shù)的性質(zhì),解題關鍵在于掌握反比例函數(shù)y=(k≠0)的圖象是雙曲線;當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減?。划攌<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.7、B【解析】根據(jù)三角形三邊關系定理得出:如果較短兩條線段的和大于最長的線段,則三條線段可以構成三角形,由此判定即可.【詳解】A.1+2=3,不能構成三角形,故此選項錯誤;B.2+3>4,能構成三角形,故此選項正確;C.3+4=7,不能構成三角形,故此選項錯誤;D.5+2<8,不能構成三角形,故此選項錯誤.故選:B.【點睛】本題考查了三角形的三邊關系,在運用三角形三邊關系判定三條線段能否構成三角形時并不一定要列出三個不等式,只要兩條較短的線段長度之和大于第三條線段的長度即可判定這三條線段能構成一個三角形.8、A【解析】根據(jù)解直角三角形的三角函數(shù)解答即可【詳解】如圖,∵cos53°=,∴AB=故選A【點睛】此題考查解直角三角形的三角函數(shù)解,難度不大9、B【解析】分析:根據(jù)必然事件、不可能事件、隨機事件的概念可區(qū)別各類事件:A、打開電視機,正在播放茂名新聞,可能發(fā)生,也可能不發(fā)生,是隨機事件,故本選項錯誤;B、早晨的太陽從東方升起,是必然事件,故本選項正確;C、隨機擲一枚硬幣,落地后可能正面朝上,也可能背面朝上,故本選項錯誤;D、下雨后,天空出現(xiàn)彩虹,可能發(fā)生,也可能不發(fā)生,故本選項錯誤.故選B.10、B【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為n-1陰影部分的和.【詳解】由題意可得陰影部分面積等于正方形面積的,即是,5個這樣的正方形重疊部分(陰影部分)的面積和為×4,n個這樣的正方形重疊部分(陰影部分)的面積和為×(n-1)=cm1.故選B.【點睛】考查了正方形的性質(zhì),解決本題的關鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.二、填空題(每小題3分,共24分)11、【分析】采用畫樹狀圖法寫出的所有可能出現(xiàn)的結果,畫出函數(shù)圖像,并描出在拋物線與x軸所圍成的區(qū)域內(nèi)(含邊界)點,再用符合題意的點的個數(shù)除以總個數(shù),即可求出答案.【詳解】如圖,由樹狀圖可知共有20種等可能結果,由坐標系可知,在拋物線與x軸所圍成的區(qū)域內(nèi)(含邊界)的點有(0,0)、(1,3),(2,0)、(3,3),(3,0),(4,0),共6種結果,∴點在拋物線上的概率是=,故答案為:.【點睛】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.12、16或1【分析】結合垂徑定理和勾股定理,在Rt△OCE中,求得OE的長,則AE=OA+OE或AE=OA-OE,據(jù)此即可求解.【詳解】解:如圖,連接OC,∵⊙O的直徑AB=20∴OC=OA=OB=10∵弦CD⊥AB于點E∴CE=CD=8,在Rt△OCE中,OE=則AE=OA+OE=10+6=16,如圖:同理,此時AE=OA-OE=10-6=1,故AE的長是16或1.【點睛】本題考查勾股定理和垂徑定理的應用,根據(jù)題意做出圖形是本題的解題關鍵,注意分類討論.13、【分析】利用弧長公式求該扇形的半徑,圓錐的軸截面為等腰三角形,其中底邊為10,腰為母線即扇形的半徑,根據(jù)勾股定理求圓錐的高.【詳解】解:設扇形半徑為R,根據(jù)弧長公式得,∴R=20,根據(jù)勾股定理得圓錐的高為:.故答案為:.【點睛】本題考查弧長公式,及圓錐的高與母線、底面半徑之間的關系,底面周長等于扇形的弧長這個等量關系和勾股定理是解答此題的關鍵.14、【分析】設窗的高度為xm,寬為m,根據(jù)矩形面積公式列出二次函數(shù)求函數(shù)值的最大值即可.【詳解】解:設窗的高度為xm,寬為.所以,即,當x=2m時,S最大值為.故答案為:.【點睛】本題考查二次函數(shù)的應用.能熟練將二次函數(shù)化為頂點式,并據(jù)此求出函數(shù)的最值是解決此題的關鍵.15、(1,3)【解析】首先知二次函數(shù)的頂點坐標根據(jù)頂點式y(tǒng)=a(x+)2+,知頂點坐標是(-,),把已知代入就可求出頂點坐標.【詳解】解:y=ax2+bx+c,配方得y=a(x+)2+,頂點坐標是(-,),∵y=2(x-1)2+3,∴二次函數(shù)y=2(x-1)2+3的圖象的頂點坐標是(1,3).【點睛】解此題的關鍵是知二次函數(shù)y=ax2+bx+c的頂點坐標是(-,),和轉(zhuǎn)化形式y(tǒng)=a(x+)2+,代入即可.16、6米.【解析】試題分析:在Rt△ABC中,已知坡面AB的坡比以及鉛直高度BC的值,通過解直角三角形即可求出斜面AB的長.試題解析:在Rt△ABC中,BC=3米,tanA=1:;∴AC=BC÷tanA=3米,∴AB=米.考點:解直角三角形的應用.17、【分析】連接OA,AB與y軸交于點C,根據(jù)AB=2,可得出點A,B的橫坐標分別為?1,1.再代入拋物線即可得出點A,B的坐標,再根據(jù)勾股定理得出⊙O的半徑.【詳解】連接OA,設AB與y軸交于點C,∵AB=2,∴點A,B的橫坐標分別為?1,1.∵⊙O與拋物線交于A,B兩點,∴點A,B的坐標分別為(?1,),(1,),在Rt△OAC中,由勾股定理得OA===,∴⊙O的半徑為.故答案為:.【點睛】本題考查了垂徑定理、勾股定理以及二次函數(shù)圖象上點的特征,求得點A的縱坐標是解題的關鍵.18、70°【分析】連接OA、OB,根據(jù)圓周角定理求得∠AOB,由切線的性質(zhì)求出∠OAP=∠OBP=90°,再由四邊形的內(nèi)角和等于360°,即可得出答案【詳解】解:連接OA、OB,∠ACB=55°,∴∠AOB=110°∵PA、PB是⊙O的兩條切線,點A、B為切點,∴∠OAP=∠OBP=90°∵∠APB+∠OAP+∠AOB+∠OBP=360°∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=70°故答案為:70【點睛】本題考查了切線的性質(zhì)、四邊形的內(nèi)角和定理以及圓周角定理,利用切線性質(zhì)和圓周角定理求出角的度數(shù)是解題的關鍵三、解答題(共66分)19、(1)見解析;(2)①60°,②120°.【分析】(1)連接,由,得到為等邊三角形,得到,即可得到,則結論成立;(2)①連接BD,由圓周角定理,得到∠ABD=30°,則∠DBE=60°,又有∠BEP=120°,根據(jù)同旁內(nèi)角互補得到PE//DB,然后證明,即可得到答案;②由圓周角定理,得∠ABD=60°,得到∠EBD=90°,然后由直徑所對的圓周角為90°,得到,即可得到答案.【詳解】證明:連接,,.,為等邊三角形,.點是的三等分點,,,,即,是的切線.(2)①當時,四邊形是菱形;如圖,連接BD,∵,∴,∴,∵AB為直徑,則∠AEB=90°,由(1)知,∴,∴,∴PE//DB,∵,,∴,∴四邊形是菱形;故答案為:60°.②當時,四邊形是矩形.如圖,連接AE、AD、DB,∵,∴,∴,∵AB是直徑,∴,∴四邊形是矩形.故答案為:.【點睛】本題考查了圓的切線的判定和性質(zhì),圓周角定理,菱形的判定和矩形的判定,解題的關鍵是正確作出輔助線,利用圓的性質(zhì)進行解題.20、(1)①,②.(2)無變化;理由參見解析.(3),.【分析】(1)①當α=0°時,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據(jù)點D、E分別是邊BC、AC的中點,分別求出AE、BD的大小,即可求出的值是多少.②α=180°時,可得AB∥DE,然后根據(jù),求出的值是多少即可.(2)首先判斷出∠ECA=∠DCB,再根據(jù),判斷出△ECA∽△DCB,即可求出的值是多少,進而判斷出的大小沒有變化即可.(3)根據(jù)題意,分兩種情況:①點A,D,E所在的直線和BC平行時;②點A,D,E所在的直線和BC相交時;然后分類討論,求出線段BD的長各是多少即可.【詳解】(1)①當α=0°時,∵Rt△ABC中,∠B=90°,∴AC=,∵點D、E分別是邊BC、AC的中點,∴,BD=8÷2=4,∴.②如圖1,,當α=180°時,可得AB∥DE,∵,∴(2)如圖2,,當0°≤α<360°時,的大小沒有變化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如圖3,,∵AC=4,CD=4,CD⊥AD,∴AD=∵AD=BC,AB=DC,∠B=90°,∴四邊形ABCD是矩形,∴BD=AC=.②如圖4,連接BD,過點D作AC的垂線交AC于點Q,過點B作AC的垂線交AC于點P,,∵AC=,CD=4,CD⊥AD,∴AD=,∵點D、E分別是邊BC、AC的中點,∴DE==2,∴AE=AD-DE=8-2=6,由(2),可得,∴BD=.綜上所述,BD的長為或.21、(1)40;(2)60,15;(3)補全條形統(tǒng)計圖見解析;(4)小明回答正確的概率是.【分析】(1)根據(jù)統(tǒng)計圖可知,10人占全班人數(shù)的,據(jù)此求解;(2)根據(jù)(1)中所求,容易得C類占的百分比,用1減去兩類的百分比即可求得類百分比;(3)根據(jù)題意,畫出樹狀圖,根據(jù)概率公式即可求得.【詳解】(1)全班學生總人數(shù)為10÷25%=40(人);故答案為:40;(2)B類占的百分比為:×100%=60%;C類占的百分比為1﹣25%﹣60%=15%;故答案為:60,15;(3)C類的人數(shù)40×15%=6(人),補全圖形如下:(4)根據(jù)題意畫圖如下:由樹狀圖可知共有4種可能結果,其中正確的有1種,所以小明回答正確的概率是.【點睛】本題考查統(tǒng)計圖表的中數(shù)據(jù)的計算,以及樹狀圖的繪制,涉及利用概率公式求隨機事件的概率,屬綜合基礎題.22、樹DE的高度為6米.【分析】先根據(jù)∠ACB=30°求出AC=1米,再求出∠EAC=60°,解Rt△ACE得EC的長,依據(jù)∠DCE=60°,解Rt△CDE得的長.【詳解】∵∠B=90°,∠ACB=30°,AB=2,∴AC=2AB=1.又∵∠DCE=60°,∴∠ACE=90°.∵AF∥BD,∴∠CAF=∠ACB=30°,∴∠EAC=60°.在Rt△ACE中,∵,∴,在Rt△DCE中∵∠DCE=60°,,∴.答:樹DE的高度為6米.【點睛】本題考查了解直角三角形的應用,解題的關鍵是正確的構造直角三角形并選擇正確的邊角關系解直角三角形.23、(1);(1)橫彩條的寬度為3cm,豎彩條的寬度為1cm.【分析】(1)由橫、豎彩條的寬度比為3:1知橫彩條的寬度為xcm,根據(jù)“三條彩條面積=橫彩條面積+1條豎彩條面積﹣橫豎彩條重疊矩形的面積”,列出函數(shù)關系式化簡即可;(1)根據(jù)“三條彩條所占面積是圖案面積的”,可列出關于x的一元二次方程,整理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度智能家居家具采購合同書3篇
- 2024版品牌門店加盟合同協(xié)議書
- 二零二五年度房地產(chǎn)租賃合同字體選用細則3篇
- 二零二五年度快遞快遞收派服務合同范本及執(zhí)行標準3篇
- 二零二五年度智能教育平臺教師合作勞動合同模板3篇
- 2024版鋪位租賃合同書
- 2024版新型混凝土材料工程合同
- 二零二五年度電子商務平臺跨境貿(mào)易法律風險防控合同3篇
- 二零二五年度環(huán)保監(jiān)測與監(jiān)控系統(tǒng)集成合同
- 2024景區(qū)承包經(jīng)營合同范本
- 建設工程見證取樣管理規(guī)范
- 車載智能計算芯片白皮書
- 亞硝酸鈉安全標簽
- 土建工程定額計價之建筑工程定額
- 學校安全工作匯報PPT
- 成都大熊貓基地英文導游詞-四川大熊貓基地解說詞
- 一年級語文上冊《兩件寶》教案1
- 咨詢公司工作總結(共5篇)
- GB/T 38836-2020農(nóng)村三格式戶廁建設技術規(guī)范
- 小品《天宮賀歲》臺詞劇本手稿
- 京東商業(yè)計劃書課件
評論
0/150
提交評論