湖南省鳳凰皇倉(cāng)中學(xué)2024年中考四模數(shù)學(xué)試題含解析_第1頁(yè)
湖南省鳳凰皇倉(cāng)中學(xué)2024年中考四模數(shù)學(xué)試題含解析_第2頁(yè)
湖南省鳳凰皇倉(cāng)中學(xué)2024年中考四模數(shù)學(xué)試題含解析_第3頁(yè)
湖南省鳳凰皇倉(cāng)中學(xué)2024年中考四模數(shù)學(xué)試題含解析_第4頁(yè)
湖南省鳳凰皇倉(cāng)中學(xué)2024年中考四模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省鳳凰皇倉(cāng)中學(xué)2024年中考四模數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列計(jì)算正確的是()A.a(chǎn)3﹣a2=a B.a(chǎn)2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a62.下面幾何的主視圖是()A. B. C. D.3.我國(guó)古代數(shù)學(xué)著作《孫子算經(jīng)》中有“多人共車”問(wèn)題:今有三人共車,二車空;二人共車,九人步.問(wèn)人與車各幾何?其大意是:每車坐3人,兩車空出來(lái);每車坐2人,多出9人無(wú)車坐.問(wèn)人數(shù)和車數(shù)各多少?設(shè)車輛,根據(jù)題意,可列出的方程是().A. B.C. D.4.一個(gè)幾何體由大小相同的小正方體搭成,從上面看到的幾何體的形狀圖如圖所示,其中小正方形中的數(shù)字表示在這個(gè)位置小正方體的個(gè)數(shù).從左面看到的這個(gè)幾何體的形狀圖的是()A. B. C. D.5.對(duì)于一組統(tǒng)計(jì)數(shù)據(jù):1,6,2,3,3,下列說(shuō)法錯(cuò)誤的是()A.平均數(shù)是3 B.中位數(shù)是3 C.眾數(shù)是3 D.方差是2.56.如圖,四邊形ABCD是正方形,點(diǎn)P,Q分別在邊AB,BC的延長(zhǎng)線上且BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②△OAE∽△OPA;③當(dāng)正方形的邊長(zhǎng)為3,BP=1時(shí),cos∠DFO=,其中正確結(jié)論的個(gè)數(shù)是()A.0 B.1 C.2 D.37.如圖,從正方形紙片的頂點(diǎn)沿虛線剪開(kāi),則∠1的度數(shù)可能是()A.44 B.45 C.46 D.478.如圖,在矩形ABCD中,O為AC中點(diǎn),EF過(guò)O點(diǎn)且EF⊥AC分別交DC于F,交AB于點(diǎn)E,點(diǎn)G是AE中點(diǎn)且∠AOG=30°,則下列結(jié)論正確的個(gè)數(shù)為(

)DC=3OG;(2)OG=BC;(3)△OGE是等邊三角形;(4).A.1 B.2 C.3 D.49.下列四個(gè)幾何體中,左視圖為圓的是()A. B. C. D.10.我市某小區(qū)開(kāi)展了“節(jié)約用水為環(huán)保作貢獻(xiàn)”的活動(dòng),為了解居民用水情況,在小區(qū)隨機(jī)抽查了10戶家庭的月用水量,結(jié)果如下表:月用水量(噸)8910戶數(shù)262則關(guān)于這10戶家庭的月用水量,下列說(shuō)法錯(cuò)誤的是()A.方差是4 B.極差是2 C.平均數(shù)是9 D.眾數(shù)是9二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.分解因式:4x2﹣36=___________.12.計(jì)算(﹣a)3?a2的結(jié)果等于_____.13.如圖,AB為半圓的直徑,且AB=2,半圓繞點(diǎn)B順時(shí)針旋轉(zhuǎn)40°,點(diǎn)A旋轉(zhuǎn)到A′的位置,則圖中陰影部分的面積為_(kāi)____(結(jié)果保留π).14.已知線段a=4,線段b=9,則a,b的比例中項(xiàng)是_____.15.已知線段厘米,厘米,線段c是線段a和線段b的比例中項(xiàng),線段c的長(zhǎng)度等于________厘米.16.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,1),以點(diǎn)O為旋轉(zhuǎn)中心,將點(diǎn)A逆時(shí)針旋轉(zhuǎn)到點(diǎn)B的位置,則的長(zhǎng)為_(kāi)____.三、解答題(共8題,共72分)17.(8分)如圖,矩形ABCD中,CE⊥BD于E,CF平分∠DCE與DB交于點(diǎn)F.求證:BF=BC;若AB=4cm,AD=3cm,求CF的長(zhǎng).18.(8分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C為圓心,R為半徑所作的圓與斜邊AB只有一個(gè)公共點(diǎn),則R的取值范圍是多少?19.(8分)某超市開(kāi)展早市促銷活動(dòng),為早到的顧客準(zhǔn)備一份簡(jiǎn)易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機(jī)發(fā)放,早餐一人一份,一份兩樣,一樣一個(gè).(1)按約定,“某顧客在該天早餐得到兩個(gè)雞蛋”是事件(填“隨機(jī)”、“必然”或“不可能”);(2)請(qǐng)用列表或畫樹(shù)狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.20.(8分)先化簡(jiǎn),再求值:,其中滿足.21.(8分)如圖,平行四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長(zhǎng)CD到E,使DE=CD,連接AE.(1)求證:四邊形ABDE是平行四邊形;(2)連接OE,若∠ABC=60°,且AD=DE=4,求OE的長(zhǎng).22.(10分)如圖甲,直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過(guò)B、C兩點(diǎn)的拋物線y=x2+bx+c與x軸的另一個(gè)交點(diǎn)為A,頂點(diǎn)為P.(1)求該拋物線的解析式;(2)在該拋物線的對(duì)稱軸上是否存在點(diǎn)M,使以C,P,M為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出所符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;(3)當(dāng)0<x<3時(shí),在拋物線上求一點(diǎn)E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).23.(12分)如圖,∠MON的邊OM上有兩點(diǎn)A、B在∠MON的內(nèi)部求作一點(diǎn)P,使得點(diǎn)P到∠MON的兩邊的距離相等,且△PAB的周長(zhǎng)最小.(保留作圖痕跡,不寫作法)24.如圖,在等腰直角△ABC中,∠C是直角,點(diǎn)A在直線MN上,過(guò)點(diǎn)C作CE⊥MN于點(diǎn)E,過(guò)點(diǎn)B作BF⊥MN于點(diǎn)F.(1)如圖1,當(dāng)C,B兩點(diǎn)均在直線MN的上方時(shí),①直接寫出線段AE,BF與CE的數(shù)量關(guān)系.②猜測(cè)線段AF,BF與CE的數(shù)量關(guān)系,不必寫出證明過(guò)程.(2)將等腰直角△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)至圖2位置時(shí),線段AF,BF與CE又有怎樣的數(shù)量關(guān)系,請(qǐng)寫出你的猜想,并寫出證明過(guò)程.(3)將等腰直角△ABC繞著點(diǎn)A繼續(xù)旋轉(zhuǎn)至圖3位置時(shí),BF與AC交于點(diǎn)G,若AF=3,BF=7,直接寫出FG的長(zhǎng)度.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D2、B【解析】

主視圖是從物體正面看所得到的圖形.【詳解】解:從幾何體正面看故選B.【點(diǎn)睛】本題考查了三視圖的知識(shí),主視圖是從物體的正面看得到的視圖.3、B【解析】

根據(jù)題意,表示出兩種方式的總?cè)藬?shù),然后根據(jù)人數(shù)不變列方程即可.【詳解】根據(jù)題意可得:每車坐3人,兩車空出來(lái),可得人數(shù)為3(x-2)人;每車坐2人,多出9人無(wú)車坐,可得人數(shù)為(2x+9)人,所以所列方程為:3(x-2)=2x+9.故選B.【點(diǎn)睛】此題主要考查了一元一次方程的應(yīng)用,關(guān)鍵是找到問(wèn)題中的等量關(guān)系:總?cè)藬?shù)不變,列出相應(yīng)的方程即可.4、B【解析】分析:由已知條件可知,從正面看有1列,每列小正方數(shù)形數(shù)目分別為4,1,2;從左面看有1列,每列小正方形數(shù)目分別為1,4,1.據(jù)此可畫出圖形.詳解:由俯視圖及其小正方體的分布情況知,該幾何體的主視圖為:該幾何體的左視圖為:故選:B.點(diǎn)睛:此題主要考查了幾何體的三視圖畫法.由幾何體的俯視圖及小正方形內(nèi)的數(shù)字,可知主視圖的列數(shù)與俯視圖的列數(shù)相同,且每列小正方形數(shù)目為俯視圖中該列小正方形數(shù)字中的最大數(shù)字.左視圖的列數(shù)與俯視圖的行數(shù)相同,且每列小正方形數(shù)目為俯視圖中相應(yīng)行中正方形數(shù)字中的最大數(shù)字.5、D【解析】

根據(jù)平均數(shù)、中位數(shù)、眾數(shù)和方差的定義逐一求解可得.【詳解】解:A、平均數(shù)為1+6+2+3+35B、重新排列為1、2、3、3、6,則中位數(shù)為3,正確;C、眾數(shù)為3,正確;D、方差為15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故選:D.【點(diǎn)睛】本題考查了眾數(shù)、平均數(shù)、中位數(shù)、方差.平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個(gè)數(shù)(或最中間兩個(gè)數(shù)的平均數(shù));方差是用來(lái)衡量一組數(shù)據(jù)波動(dòng)大小的量.6、C【解析】

由四邊形ABCD是正方形,得到AD=BC,根據(jù)全等三角形的性質(zhì)得到∠P=∠Q,根據(jù)余角的性質(zhì)得到AQ⊥DP;故①正確;根據(jù)勾股定理求出直接用余弦可求出.【詳解】詳解:∵四邊形ABCD是正方形,∴AD=BC,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,∴△DAP≌△ABQ,∴∠P=∠Q,∵∴∴∴AQ⊥DP;故①正確;②無(wú)法證明,故錯(cuò)誤.∵BP=1,AB=3,∴∴故③正確,故選C.【點(diǎn)睛】考查正方形的性質(zhì),三角形全等的判定與性質(zhì),勾股定理,銳角三角函數(shù)等,綜合性比較強(qiáng),對(duì)學(xué)生要求較高.7、A【解析】

連接正方形的對(duì)角線,然后依據(jù)正方形的性質(zhì)進(jìn)行判斷即可.【詳解】解:如圖所示:∵四邊形為正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故選:A.【點(diǎn)睛】本題主要考查的是正方形的性質(zhì),熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.8、C【解析】∵EF⊥AC,點(diǎn)G是AE中點(diǎn),∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE是等邊三角形,故(3)正確;設(shè)AE=2a,則OE=OG=a,由勾股定理得,AO=,∵O為AC中點(diǎn),∴AC=2AO=2,∴BC=AC=,在Rt△ABC中,由勾股定理得,AB==3a,∵四邊形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(1)正確;∵OG=a,BC=,∴OG≠BC,故(2)錯(cuò)誤;∵S△AOE=a?=,SABCD=3a?=32,∴S△AOE=SABCD,故(4)正確;綜上所述,結(jié)論正確是(1)(3)(4)共3個(gè),故選C.【點(diǎn)睛】本題考查了矩形的性質(zhì),等邊三角形的判定、勾股定理的應(yīng)用等,正確地識(shí)圖,結(jié)合已知找到有用的條件是解答本題的關(guān)鍵.9、A【解析】

根據(jù)三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長(zhǎng)方形,C.圓錐的左視圖是等腰三角形,D.圓臺(tái)的左視圖是等腰梯形,故符合題意的選項(xiàng)是A.【點(diǎn)睛】錯(cuò)因分析較容易題.失分原因是不會(huì)判斷常見(jiàn)幾何體的三視圖.10、A【解析】分析:根據(jù)極差=最大值-最小值;平均數(shù)指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個(gè)數(shù);一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),以及方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2],分別進(jìn)行計(jì)算可得答案.詳解:極差:10-8=2,平均數(shù):(8×2+9×6+10×2)÷10=9,眾數(shù)為9,方差:S2=[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故選A.點(diǎn)睛:此題主要考查了極差、眾數(shù)、平均數(shù)、方差,關(guān)鍵是掌握各知識(shí)點(diǎn)的計(jì)算方法.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、4(x+3)(x﹣3)【解析】分析:首先提取公因式4,然后再利用平方差公式進(jìn)行因式分解.詳解:原式=.點(diǎn)睛:本題主要考查的是因式分解,屬于基礎(chǔ)題型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.12、﹣a5【解析】

根據(jù)冪的乘方和積的乘方運(yùn)算法則計(jì)算即可.【詳解】解:(-a)3?a2=-a3?a2=-a3+2=-a5.故答案為:-a5.【點(diǎn)睛】本題考查了冪的乘方和積的乘方運(yùn)算.13、【解析】【分析】根據(jù)題意可得出陰影部分的面積等于扇形ABA′的面積加上半圓面積再減去半圓面積.【詳解】∵S陰影=S扇形ABA′+S半圓-S半圓=S扇形ABA′==,故答案為.【點(diǎn)睛】本題考查了扇形面積的計(jì)算以及旋轉(zhuǎn)的性質(zhì),熟記扇形面積公式且能準(zhǔn)確識(shí)圖是解題的關(guān)鍵.14、6【解析】

根據(jù)已知線段a=4,b=9,設(shè)線段x是a,b的比例中項(xiàng),列出等式,利用兩內(nèi)項(xiàng)之積等于兩外項(xiàng)之積即可得出答案.【詳解】解:∵a=4,b=9,設(shè)線段x是a,b的比例中項(xiàng),∴,∴x2=ab=4×9=36,∴x=6,x=﹣6(舍去).故答案為6【點(diǎn)睛】本題主要考查比例線段問(wèn)題,解題關(guān)鍵是利用兩內(nèi)項(xiàng)之積等于兩外項(xiàng)之積解答.15、1【解析】

根據(jù)比例中項(xiàng)的定義,列出比例式即可得出中項(xiàng),注意線段不能為負(fù).【詳解】∵線段c是線段a和線段b的比例中項(xiàng),∴,解得(線段是正數(shù),負(fù)值舍去),∴,故答案為:1.【點(diǎn)睛】本題考查比例線段、比例中項(xiàng)等知識(shí),比例中項(xiàng)的平方等于兩條線段的乘積,熟練掌握基本概念是解題關(guān)鍵.16、.【解析】

由點(diǎn)A(1,1),可得OA的長(zhǎng),點(diǎn)A在第一象限的角平分線上,可得∠AOB=45°,,再根據(jù)弧長(zhǎng)公式計(jì)算即可.【詳解】∵A(1,1),∴OA=,點(diǎn)A在第一象限的角平分線上,∵以點(diǎn)O為旋轉(zhuǎn)中心,將點(diǎn)A逆時(shí)針旋轉(zhuǎn)到點(diǎn)B的位置,∴∠AOB=45°,∴的長(zhǎng)為=,故答案為:.【點(diǎn)睛】本題考查坐標(biāo)與圖形變化——旋轉(zhuǎn),弧長(zhǎng)公式,熟練掌握旋轉(zhuǎn)的性質(zhì)以及弧長(zhǎng)公式是解題的關(guān)鍵.本題中求出OA=以及∠AOB=45°也是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)見(jiàn)解析,(2)CF=cm.【解析】

(1)要求證:BF=BC只要證明∠CFB=∠FCB就可以,從而轉(zhuǎn)化為證明∠BCE=∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根據(jù)三角形的面積等于BD?CE=BC?DC,就可以求出CE的長(zhǎng).要求CF的長(zhǎng),可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根據(jù)勾股定理就可以求出,由此解決問(wèn)題.【詳解】證明:(1)∵四邊形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四邊形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD=.又∵BD?CE=BC?DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.【點(diǎn)睛】本題考查矩形的判定與性質(zhì),等腰三角形的判定定理,等角對(duì)等邊,以及勾股定理,三角形面積計(jì)算公式的運(yùn)用,靈活運(yùn)用已知,理清思路,解決問(wèn)題.18、R=125或R=【解析】

解:當(dāng)圓與斜邊相切時(shí),則R=125,即圓與斜邊有且只有一個(gè)公共點(diǎn),當(dāng)R=12考點(diǎn):圓與直線的位置關(guān)系.19、(1)不可能;(2).【解析】

(1)利用確定事件和隨機(jī)事件的定義進(jìn)行判斷;(2)畫樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù),再找出其中某顧客該天早餐剛好得到菜包和油條的結(jié)果數(shù),然后根據(jù)概率公式計(jì)算.【詳解】(1)某顧客在該天早餐得到兩個(gè)雞蛋”是不可能事件;故答案為不可能;(2)畫樹(shù)狀圖:共有12種等可能的結(jié)果數(shù),其中某顧客該天早餐剛好得到菜包和油條的結(jié)果數(shù)為2,所以某顧客該天早餐剛好得到菜包和油條的概率=.【點(diǎn)睛】本題考查了列表法與樹(shù)狀圖法:利用列表法或樹(shù)狀圖法展示所有等可能的結(jié)果n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.20、1【解析】試題分析:原式第一項(xiàng)括號(hào)中兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算,同時(shí)利用除法法則變形,約分后,兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算得到最簡(jiǎn)結(jié)果,已知方程變形后代入計(jì)算即可求出值.試題解析:原式=∵x2?x?1=0,∴x2=x+1,則原式=1.21、(1)見(jiàn)解析;(2)2.【解析】

(1)四邊形ABCD是平行四邊形,由平行四邊形的性質(zhì),可得AB=DE,AB//DE,則四邊形ABDE是平行四邊形;(2)因?yàn)锳D=DE=1,則AD=AB=1,四邊形ABCD是菱形,由菱形的性質(zhì)及解直角三角形可得AO=AB?sin∠ABO=2,BO=AB?cos∠ABO=2,BD=1,則AE=BD,利用勾股定理可得OE.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD.∵DE=CD,∴AB=DE.∴四邊形ABDE是平行四邊形;(2)∵AD=DE=1,∴AD=AB=1.∴?ABCD是菱形,∴AB=BC,AC⊥BD,,.又∵∠ABC=60°,∴∠ABO=30°.在Rt△ABO中,,.∴.∵四邊形ABDE是平行四邊形,∴AE∥BD,.又∵AC⊥BD,∴AC⊥AE.在Rt△AOE中,.【點(diǎn)睛】此題考查平行四邊形的性質(zhì)及判斷,考查菱形的判斷及性質(zhì),及解直角三角形,解題關(guān)鍵在于掌握判定定理和利用三角函數(shù)進(jìn)行計(jì)算.22、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點(diǎn)坐標(biāo)為(,)時(shí),△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點(diǎn)坐標(biāo)及對(duì)稱軸,可設(shè)出M點(diǎn)坐標(biāo),表示出MC、MP和PC的長(zhǎng),分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)的坐標(biāo);(3)過(guò)E作EF⊥x軸,交直線BC于點(diǎn)F,交x軸于點(diǎn)D,可設(shè)出E點(diǎn)坐標(biāo),表示出F點(diǎn)的坐標(biāo),表示出EF的長(zhǎng),進(jìn)一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時(shí)E點(diǎn)的坐標(biāo).試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,∴B(3,0),C(0,3),把B、C坐標(biāo)代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對(duì)稱軸為x=2,P(2,﹣1),設(shè)M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當(dāng)MC=MP時(shí),則有=|t+1|,解得t=,此時(shí)M(2,);②當(dāng)MC=PC時(shí),則有=2,解得t=﹣1(與P點(diǎn)重合,舍去)或t=7,此時(shí)M(2,7);③當(dāng)MP=PC時(shí),則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時(shí)M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點(diǎn)M,其坐標(biāo)為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過(guò)E作EF⊥x軸,交BC于點(diǎn)F,交x軸于點(diǎn)D,設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴當(dāng)x=時(shí),△CBE的面積最大,此時(shí)E點(diǎn)坐標(biāo)為(,),即當(dāng)E點(diǎn)坐標(biāo)為(,)時(shí),△CBE的面積最大.考點(diǎn):二次函數(shù)綜合題.23、詳見(jiàn)解析【解析】

作∠MON的角平分線OT,在ON上截取OA′,使得OA′=OA,連接BA′交OT于點(diǎn)P,點(diǎn)P即為所求.【詳解】解:如圖,點(diǎn)P即為所求.【點(diǎn)睛】本題主要考查作圖-復(fù)雜作圖,利用了角平分線的性質(zhì),難點(diǎn)在于利用軸對(duì)稱求最短路線的問(wèn)題.24、(1)①AE+BF=EC;②AF+BF=2CE;(2)AF﹣BF=2CE,證明見(jiàn)解析;(3)FG=.【解析】

(1)①只

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論