2025年高考數(shù)學(xué)復(fù)習(xí)核心考點(diǎn)全題型突破(新教材新高考)第03講 三角恒等變換、函數(shù)y=Asin(wxψ)的圖象及其應(yīng)用(原卷版)_第1頁
2025年高考數(shù)學(xué)復(fù)習(xí)核心考點(diǎn)全題型突破(新教材新高考)第03講 三角恒等變換、函數(shù)y=Asin(wxψ)的圖象及其應(yīng)用(原卷版)_第2頁
2025年高考數(shù)學(xué)復(fù)習(xí)核心考點(diǎn)全題型突破(新教材新高考)第03講 三角恒等變換、函數(shù)y=Asin(wxψ)的圖象及其應(yīng)用(原卷版)_第3頁
2025年高考數(shù)學(xué)復(fù)習(xí)核心考點(diǎn)全題型突破(新教材新高考)第03講 三角恒等變換、函數(shù)y=Asin(wxψ)的圖象及其應(yīng)用(原卷版)_第4頁
2025年高考數(shù)學(xué)復(fù)習(xí)核心考點(diǎn)全題型突破(新教材新高考)第03講 三角恒等變換、函數(shù)y=Asin(wxψ)的圖象及其應(yīng)用(原卷版)_第5頁
已閱讀5頁,還剩30頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第03講三角恒等變換、函數(shù)的圖象及其應(yīng)用目錄TOC\o"1-2"\h\u第一部分:題型篇 1題型一:重點(diǎn)考查利用拼湊角求三角函數(shù)值 1題型二:重點(diǎn)考查利用拼湊角求角 5題型三:重點(diǎn)考查函數(shù)的圖象變換 11題型四:重點(diǎn)考查根據(jù)圖象求三角函數(shù)的解析式 16題型五:重點(diǎn)考查利用五點(diǎn)法作一個(gè)周期的圖象 25題型六:重點(diǎn)考查利用五點(diǎn)法作規(guī)定范圍內(nèi)的圖象 33題型七:重點(diǎn)考查利用圖象解決函數(shù)零點(diǎn)(根)的個(gè)數(shù)問題 42題型八:重點(diǎn)考查利用圖象解決函數(shù)零點(diǎn)(根)的代數(shù)和問題 51題型九:重點(diǎn)考查利用圖象解決三角函數(shù)恒成立問題 59第二部分:易錯(cuò)篇 67易錯(cuò)一:圖象平移時(shí)忽略誰平移成誰 67易錯(cuò)二:圖象平移時(shí)忽略函數(shù)名化統(tǒng)一 69第一部分:題型篇題型一:重點(diǎn)考查利用拼湊角求三角函數(shù)值典型例題例題1.(2023春·山東臨沂·高一統(tǒng)考期中)已知,,則的值為(

)A. B. C. D.例題2.(2023春·安徽·高一校聯(lián)考期中)已知,則=___________.例題3.(2023春·廣東廣州·高二廣州市第八十九中學(xué)校考期中)已知,均為銳角,,.(1)求的值;(2)求的值.例題4.(2023春·貴州畢節(jié)·高一??计谥校┮阎?,,,.(1)求和的值;(2)求的值.精練核心考點(diǎn)1.(2023·陜西商洛·統(tǒng)考三模)已知,,則(

)A. B. C. D.2.(2023春·重慶·高一校聯(lián)考期中)已知是銳角,且,則___________.3.(2023春·安徽滁州·高一安徽省滁州中學(xué)??茧A段練習(xí))已知,,,求的值.4.(2023春·江蘇南京·高一校考階段練習(xí))(1)已知,求的值;(2)已知,且,,求的值.題型二:重點(diǎn)考查利用拼湊角求角典型例題例題1.(2023春·寧夏銀川·高一賀蘭縣第一中學(xué)??茧A段練習(xí))已知,均為銳角,且,,則=________.例題.(2022春·高一校考單元測(cè)試)已知,且,,求的值及角.例題3.(2023春·江蘇南京·高一江蘇省高淳高級(jí)中學(xué)校聯(lián)考階段練習(xí))已知,.(1)求;(2)若,且,求.精練核心考點(diǎn)1.(2023春·江蘇鎮(zhèn)江·高一統(tǒng)考期中)已知,,且,.(1)求;(2)求角的大小.2.(2023春·江蘇連云港·高一統(tǒng)考期中)已知角,為銳角,,.(1)求的值;(2)求的值.3.(2023春·山東青島·高一青島二中??计谥校?)已知函數(shù),若,求;(2)已知,,,,求的值.4.(2023春·四川成都·高一四川省成都市新都一中校聯(lián)考期中)已知銳角,,且滿足,.(1)求;(2)求.題型三:重點(diǎn)考查函數(shù)的圖象變換典型例題例題1.(2023春·江西贛州·高一校聯(lián)考期中)為了得到函數(shù)的圖象,只需將函數(shù)的圖象(

)A.向右平移個(gè)單位長(zhǎng)度 B.向左平移個(gè)單位長(zhǎng)度C.向右平移個(gè)單位長(zhǎng)度 D.向左平移個(gè)單位長(zhǎng)度例題2.(2023春·河南焦作·高一統(tǒng)考期中)已知函數(shù),為了得到函數(shù)的圖象,只需把的圖象(

)A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向右平移個(gè)單位長(zhǎng)度 D.向左平移個(gè)單位長(zhǎng)度例題3.(2023春·上海黃浦·高一格致中學(xué)??茧A段練習(xí))已知曲線,,則下面結(jié)論正確的是(

)A.把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線B.把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C.把上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線D.把上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線例題4.(2023·高一課時(shí)練習(xí))要得到函數(shù)的圖象,只需的圖象A.向左平移個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的倍(橫坐標(biāo)不變)B.向左平移個(gè)單位,再把各點(diǎn)的縱坐標(biāo)縮短到原來的倍(橫坐標(biāo)不變)C.向左平移個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的倍(橫坐標(biāo)不變)例題5.(多選)(2023秋·陜西渭南·高一統(tǒng)考期末)要得到的圖象,可以將函數(shù)圖象上所有的點(diǎn)(

)A.向右平移個(gè)單位,再把橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變B.向右平移個(gè)單位,再把橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變C.橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,再向右平移個(gè)單位D.橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,再向右平移個(gè)單位精練核心考點(diǎn)1.(2023春·廣東佛山·高一佛山市順德區(qū)樂從中學(xué)??茧A段練習(xí))將函數(shù)的圖象向右平移個(gè)周期后,所得圖象對(duì)應(yīng)的函數(shù)為(

)A. B.C. D.2.(2023·全國·高三專題練習(xí))將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度,再向上平移4個(gè)單位長(zhǎng)度,得到函數(shù)的圖像,則的解析式為(

)A. B.C. D.3.(2023春·廣東東莞·高一東莞市東華高級(jí)中學(xué)校聯(lián)考階段練習(xí))要得到函數(shù)的圖象,只需將函數(shù)的圖象進(jìn)行如下變換得到(

)A.向右平移個(gè)單位 B.向左平移個(gè)單位C.向右平移個(gè)單位 D.向左平移個(gè)單位4.(2023·全國·高三專題練習(xí))若要得到函數(shù)的圖象,只需將函數(shù)的圖象(

)A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度5.(多選)(2023·重慶·統(tǒng)考模擬預(yù)測(cè))已知,將函數(shù)的圖象向右平移個(gè)單位得到函數(shù)的圖象,則(

)A.在區(qū)間上是增函數(shù)B.的一條對(duì)稱軸為C.的一個(gè)對(duì)稱中心為D.在區(qū)間上只有2個(gè)極值點(diǎn)題型四:重點(diǎn)考查根據(jù)圖象求三角函數(shù)的解析式典型例題例題1.(多選)(2023·遼寧·校聯(lián)考二模)函數(shù)的部分圖像如圖所示,,,則下列選項(xiàng)中正確的有(

).A.B.C.將的圖像右移個(gè)單位所得函數(shù)為奇函數(shù)D.的單調(diào)遞增區(qū)間例題2.(多選)(2023·湖北·模擬預(yù)測(cè))如圖是函數(shù)的部分圖像,則(

)A.B.在區(qū)間單調(diào)遞增C.直線是曲線的對(duì)稱軸D.的圖像向左平移個(gè)單位得到函數(shù)的圖像例題3.(多選)(2023秋·安徽滁州·高一安徽省定遠(yuǎn)縣第三中學(xué)校聯(lián)考期末)已知函數(shù)的部分圖象如圖所示,下列說法正確的是(

)A.B.的圖象關(guān)于直線對(duì)稱C.在上單調(diào)遞減D.該圖象向右平移個(gè)單位可得的圖象例題4.(2023·海南·統(tǒng)考模擬預(yù)測(cè))函數(shù)的部分圖象如圖所示,將函數(shù)的圖象向左平移1個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則(

)A. B. C. D.1例題5.(2023·新疆烏魯木齊·統(tǒng)考三模)已知函數(shù)的部分圖象如圖所示,將函數(shù)圖象上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,則的值為______.精練核心考點(diǎn)1.(多選)(2023春·黑龍江大慶·高一大慶實(shí)驗(yàn)中學(xué)??茧A段練習(xí))函數(shù)的部分圖像如圖所示,則下列說法正確的是(

)A.B.的圖像關(guān)于直線對(duì)稱C.在上單調(diào)遞增D.若將的圖像向右平移個(gè)單位長(zhǎng)度,則所得圖像關(guān)于軸對(duì)稱2.(多選)(2023·安徽淮北·統(tǒng)考二模)函數(shù)的部分圖象如圖所示,則下列說法正確的是(

)A.的最小正周期為B.C.在上單調(diào)遞增D.將函數(shù)的圖象向左平移個(gè)單位.得到函數(shù)的圖象3.(2023·云南曲靖·統(tǒng)考模擬預(yù)測(cè))已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的部分圖象如圖所示,則(

)A. B. C. D.4.(2023·新疆烏魯木齊·統(tǒng)考三模)已知函數(shù)的部分圖象如圖所示,若將函數(shù)圖象上所有的點(diǎn)向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,則的值為______.5.(2023春·北京·高三北京市第五中學(xué)??茧A段練習(xí))已知函數(shù)f的部分圖象如圖所示,將的圖象向右平移(T為的最小正周期)個(gè)單位長(zhǎng)度得到的圖象,則______.題型五:重點(diǎn)考查利用五點(diǎn)法作一個(gè)周期的圖象典型例題例題1.(2023春·四川成都·高一??茧A段練習(xí))已知函數(shù),.(1)用五點(diǎn)法作圖,填表并作出在一個(gè)周期內(nèi)的圖象(2)寫出函數(shù)單調(diào)遞減區(qū)間和其圖象的對(duì)稱軸方程;例題2.(2023春·北京·高一??奸_學(xué)考試)已知函數(shù).(1)試用“五點(diǎn)法”畫出它的圖象;列表:作圖:(2)從正弦曲線出發(fā),如何通過圖象變換得到函數(shù)的圖象?(兩種方法)例題3.(2023·全國·高三專題練習(xí))已知函數(shù).(1)用五點(diǎn)法畫出函數(shù)的大致圖像,并寫出的最小正周期;(2)寫出函數(shù)在上的單調(diào)遞減區(qū)間;(3)將圖像上所有的點(diǎn)向右平移個(gè)單位長(zhǎng)度,縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋?,得到的圖像,求在區(qū)間上的最值.精練核心考點(diǎn)1.(2023春·江西南昌·高一南昌二中??茧A段練習(xí))已知函數(shù).(1)請(qǐng)用“五點(diǎn)法”畫出函數(shù)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖(先在所給的表格中填上所需的數(shù)值,再畫圖);(2)當(dāng)時(shí),求函數(shù)的最大值和最小值及相應(yīng)的的值.2.(2023春·江西南昌·高一??紝W(xué)業(yè)考試)已知函數(shù)(1)請(qǐng)用“五點(diǎn)法”畫出函數(shù)在一個(gè)周期上的圖像(先在所給的表格中填上所需的數(shù)字,再畫圖);(2)求在區(qū)間上的最大值和最小值及相應(yīng)的值3.(2023秋·江蘇連云港·高一統(tǒng)考期末)已知函數(shù).(1)用“五點(diǎn)法”畫出函數(shù)一個(gè)周期的簡(jiǎn)圖;xy(2)寫出函數(shù)在區(qū)間上的單調(diào)遞增區(qū)間.題型六:重點(diǎn)考查利用五點(diǎn)法作規(guī)定范圍內(nèi)的圖象典型例題例題1.(2023·全國·高三專題練習(xí))某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一周期內(nèi)的圖像時(shí),列表并填入的部分?jǐn)?shù)據(jù)如下表:0010-10000(1)請(qǐng)?zhí)顚懮媳淼目崭裉帲嫵龊瘮?shù)圖像(2)寫出函數(shù)的解析式,將函數(shù)的圖像向右平移個(gè)單位,再所得圖像上各點(diǎn)的橫坐標(biāo)縮小為原來的,縱坐標(biāo)不變,得到函數(shù)的圖像,求的解析式.例題2.(2023春·江西·高一校聯(lián)考期中)已知變換:先縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來的2倍,再向左平移個(gè)單位長(zhǎng)度;變換:先向左平移個(gè)單位長(zhǎng)度,再縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來的2倍.請(qǐng)從,兩種變換中選擇一種變換,將函數(shù)的圖象變換得到函數(shù)的圖象,并求解下列問題.(1)求的解析式,并用五點(diǎn)法畫出函數(shù)在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;(2)求函數(shù)的單調(diào)遞減區(qū)間,并求的最大值以及對(duì)應(yīng)的取值集合.例題3.(2023春·上海長(zhǎng)寧·高一上海市延安中學(xué)??计谥校┠惩瑢W(xué)用“五點(diǎn)法”畫函數(shù)在某一周期內(nèi)的圖像時(shí),列表并填入的部分?jǐn)?shù)據(jù)如下表:00100000(1)請(qǐng)寫出表格中空格處的值,寫出函數(shù)的解析式,并畫出函數(shù)的大致圖像;(2)將函數(shù)的圖像向右平移個(gè)單位,再將所得圖像上各點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到函數(shù)的圖像,求的單調(diào)減區(qū)間.精練核心考點(diǎn)1.(2023春·云南臨滄·高一校考階段練習(xí))已知函數(shù)的圖象中相鄰兩條對(duì)稱軸之間的距離為,且直線是其圖象的一條對(duì)稱軸.(1)求的值;(2)用“五點(diǎn)法”列表,并在圖中畫出函數(shù)在區(qū)間上的圖象;2.(2023秋·吉林長(zhǎng)春·高一長(zhǎng)春市第二中學(xué)??计谀┮阎瘮?shù).xπ(1)填寫上表,并用“五點(diǎn)法”畫出在上的圖象;(2)先將的圖象向上平移1個(gè)單位長(zhǎng)度,再將圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的,最后將得到的圖象向右平移個(gè)單位長(zhǎng)度,得到的圖象,求的對(duì)稱軸方程.3.(2023秋·江西吉安·高一永豐縣永豐中學(xué)??计谀┮阎瘮?shù)(1)用五點(diǎn)法作出在內(nèi)的圖象;(2)若,且,求的取值集合.題型七:重點(diǎn)考查利用圖象解決函數(shù)零點(diǎn)(根)的個(gè)數(shù)問題典型例題例題1.(2023春·全國·高一專題練習(xí))已知函數(shù)的最大值為1.(1)求實(shí)數(shù)的值;(2)將圖象上所有點(diǎn)向右平移個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的倍,縱坐標(biāo)不變,得到的圖象,若在上有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.例題2.(2023·江蘇·統(tǒng)考三模)將函數(shù)的圖象先向右平移個(gè)單位長(zhǎng)度,再將所得函圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼模é兀?)倍(縱坐標(biāo)不變),得到函數(shù)的圖象.(1)若,求函數(shù)在區(qū)間上的最大值;(2)若函數(shù)在區(qū)間上沒有零點(diǎn),求的取值范圍.例題3.(2023春·四川內(nèi)江·高一四川省內(nèi)江市第六中學(xué)??茧A段練習(xí))已知函數(shù)的圖像如圖.(1)根據(jù)圖像,求的對(duì)稱中心;(2)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到曲線,把上各點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍得到的圖象,且關(guān)于的方程在上有解,求的取值范圍.例題4.(2023·山西太原·太原五中??家荒#┮阎瘮?shù)的周期為,圖象的一個(gè)對(duì)稱中心為,將函數(shù)圖象上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍(縱坐標(biāo)不變),再將所得圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象.(1)求函數(shù)與的解析式;(2)求實(shí)數(shù)與正整數(shù),使得在內(nèi)恰有2023個(gè)零點(diǎn).精練核心考點(diǎn)1.(2023春·北京西城·高一北師大實(shí)驗(yàn)中學(xué)??计谥校┮阎瘮?shù).(1)求在區(qū)間上的最大值和最小值;(2)若函數(shù)在上有兩個(gè)不同的零點(diǎn),請(qǐng)直接寫出實(shí)數(shù)的取值范圍(不需過程).2.(2023春·河北石家莊·高一石家莊一中校考期中)已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)將函數(shù)的圖象上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)原來的兩倍,縱坐標(biāo)保持不變,得到函數(shù)的圖象,若方程在上有兩個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.3.(2023春·江西贛州·高一校聯(lián)考期中)已知函數(shù)的部分圖象如圖所示,且圖中的.(1)求的解析式;(2)判斷函數(shù)在上的零點(diǎn)個(gè)數(shù),并說明理由.4.(2023春·河南南陽·高一統(tǒng)考階段練習(xí))已知函數(shù)的部分圖象如圖所示,矩形的面積為.(1)求的最小正周期和單調(diào)遞增區(qū)間.(2)先將的圖象向右平移個(gè)單位長(zhǎng)度,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)縮小為原來的,最后得到函數(shù)的圖象.若關(guān)于的方程在區(qū)間上僅有3個(gè)實(shí)根,求實(shí)數(shù)的取值范圍.題型八:重點(diǎn)考查利用圖象解決函數(shù)零點(diǎn)(根)的代數(shù)和問題典型例題例題1.(2023春·湖北·高一校聯(lián)考期中)已知函數(shù)的部分圖象如圖所示.(1)求的解析式;(2)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到曲線,把上各點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼谋?,得到函?shù)的圖象,若關(guān)于的方程在上有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍及的值.例題2.(2023春·上海黃浦·高一上海市大同中學(xué)??计谥校┮阎瘮?shù).(1)求函數(shù)的最小值及取得最小值時(shí)相應(yīng)的的值;(2)若在上有四個(gè)不同的根,求的取值范圍及四個(gè)根之和.例題3.(2023秋·黑龍江哈爾濱·高一哈爾濱市第六中學(xué)校??计谀┮阎瘮?shù)的圖象與x軸的兩個(gè)相鄰交點(diǎn)之間的距離為,直線是的圖象的一條對(duì)稱軸.(1)求函數(shù)的解析式;(2)若函數(shù)在區(qū)間上恰有3個(gè)零點(diǎn),請(qǐng)直接寫出的取值范圍,并求的值.例題4.(2023春·遼寧·高一遼寧實(shí)驗(yàn)中學(xué)??茧A段練習(xí))已知函數(shù),,的圖像整體向右平移個(gè)單位后圖像關(guān)于原點(diǎn)對(duì)稱.(1)求的單調(diào)遞增區(qū)間;(2)若,且,,求和的值.精練核心考點(diǎn)1.(2023春·福建福州·高一福建省福州第八中學(xué)??计谥校┮阎蛄?,,函數(shù).(1)求函數(shù)的解析式和對(duì)稱軸方程;(2)若時(shí),關(guān)于的方程恰有三個(gè)不同的實(shí)根,,,求實(shí)數(shù)的取值范圍及的值.2.(2023春·四川宜賓·高一??茧A段練習(xí))已知函數(shù)在區(qū)間上的最大值為3.(1)求使成立的的取值集合;(2)將函數(shù)圖象上所有的點(diǎn)向下平移1個(gè)單位長(zhǎng)度,再向右平移一個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,若,且,求的值.3.(2023春·河北衡水·高一校考階段練習(xí))已知函數(shù)的部分圖象如圖所示.(1)求的解析式;(2)若方程在上恰有三個(gè)不相等的實(shí)數(shù)根,求的取值范圍和的值.題型九:重點(diǎn)考查利用圖象解決三角函數(shù)恒成立問題典型例題例題1.(2023春·江蘇南京·高三南京市寧海中學(xué)??茧A段練習(xí))將函數(shù)的圖象按向量平移指的是:當(dāng)時(shí),圖形向右平移個(gè)單位,當(dāng)時(shí),圖形向左平移個(gè)單位;當(dāng)時(shí),圖形向上平移個(gè)單位,當(dāng)時(shí),圖形向下平移個(gè)單位.已知,將的圖象按平移得到函數(shù)的圖象.(1)求的解析式;(2)若函數(shù)在區(qū)間上至少含30個(gè)零點(diǎn),在所有滿足上述條件的中,求的最小值;(3)對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.例題2.(2023春·黑龍江·高一黑龍江實(shí)驗(yàn)中學(xué)校考期中)已知函數(shù)的部分圖像如圖所示.,,.(1)求的解析式;(2)將的圖像先向右平移個(gè)單位,再將圖像上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變),所得到的圖像對(duì)應(yīng)的函數(shù)為,若對(duì)于恒成立,求實(shí)數(shù)取值范圍.例題3.(2023春·江西南昌·高一??茧A段練習(xí))設(shè)函數(shù),將函數(shù)的圖象向左平移單位長(zhǎng)度后得到函數(shù)的圖象,已知的最小正周期為,且為奇函數(shù).(1)求的解析式;(2)令函數(shù)對(duì)任意實(shí)數(shù),恒有,求實(shí)數(shù)的取值范圍.例題4.(2023春·黑龍江哈爾濱·高一哈爾濱市第六中學(xué)校??茧A段練習(xí))已知,,,設(shè),若函數(shù)圖象相鄰的兩對(duì)稱軸之間的距離為;(1)求;(2)若任意,均使恒成立,求實(shí)數(shù)的取值范圍.精練核心考點(diǎn)1.(2023秋·江蘇鎮(zhèn)江·高一統(tǒng)考期末)用“五點(diǎn)法”作函數(shù)在一個(gè)周期內(nèi)的圖象時(shí),列表計(jì)算了部分?jǐn)?shù)據(jù):0020d0(1)請(qǐng)根據(jù)上表數(shù)據(jù),求出函數(shù)的表達(dá)式并寫出表內(nèi)實(shí)數(shù)a,b,c,d的值;(2)請(qǐng)?jiān)诮o定的坐標(biāo)系內(nèi),作出函數(shù)在一個(gè)周期內(nèi)的圖象;(3)若存在,使得成立,求實(shí)數(shù)的取值范圍.2.(2023春·北京海淀·高一北京市八一中學(xué)??计谥校┮阎瘮?shù),.(1)請(qǐng)化簡(jiǎn)為正弦型函數(shù),并求函數(shù)的單調(diào)遞增區(qū)間;(2)求函數(shù)在區(qū)間上的最值,及取得最值時(shí)x的值.(3)若,都有恒成立,求實(shí)數(shù)m的取值范圍.3.(2023春·重慶沙坪壩·高一重慶南開中學(xué)??计谥校┮阎瘮?shù),.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)先將函數(shù)圖像的縱坐標(biāo)變?yōu)樵瓉淼?倍(橫坐標(biāo)不變),再向右平移個(gè)單位,得到函數(shù).關(guān)于x的不等式對(duì)恒成立,求實(shí)數(shù)m的取值范圍.第二部分:易錯(cuò)篇易錯(cuò)一:圖象平移時(shí)忽略誰平移成誰典型例題例題1.(2023·全國·高三專題練習(xí))為了得到函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論