版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
主編:費宇中國人民大學出版社多元統(tǒng)計分析(multivariatestatisticalanalysis)就是把多個變量合在一起進行研究的統(tǒng)計學方法,在自然科學、經(jīng)濟學、管理學和社會科學等領域有廣泛的應用.本章對多元統(tǒng)計分析和R軟件作簡要介紹什么是多元統(tǒng)計分析?2024/7/312主編:費宇1.1多元統(tǒng)計分析簡介1.2R簡介第1章多元統(tǒng)計分析與R簡介3主編:費宇2024/7/311.1.1多元統(tǒng)計分析的含義(1)多元統(tǒng)計分析是研究多個(隨機)變量之間相互關系和規(guī)律的統(tǒng)計學分支.(3)主要討論:多元回歸分析、聚類分析、判別分析、主成分分析、因子分析、對應分析、典型相關分析和多維標度分析.(2)不討論:多元正態(tài)分布的參數(shù)估計、均值的假設檢驗和協(xié)方差陣的假設檢驗問題.1.1多元統(tǒng)計分析簡介2024/7/314主編:費宇1.1.2多元統(tǒng)計分析的用途(1)多變量的相關性分析:簡單相關分析、偏相關分析、復相關分析、典型相關分析(2)預測分析:多元回歸分析(3)分類和組合:聚類分析和判別分析(4)降維和數(shù)據(jù)簡化:主成分分析和因子分析1.1多元統(tǒng)計分析簡介2024/7/315主編:費宇1.1.3多元統(tǒng)計分析的內容(1)多元回歸分析:研究一個因變量隨多個自變量的變化而變化的情況,通過建立多元回歸模型(線性模型和廣義線性模型等)來分析二者之間的依賴關系
第5章,第6章(2)聚類分析:根據(jù)聚類對象的多個變量(指標)的測量值,按照某個標準把這寫個體分成若干類
第7章(3)判別分析:在已知分類的前提下,將給定的新樣品,按照某種分類規(guī)則判入某個類中
第8章1.1多元統(tǒng)計分析簡介2024/7/316主編:費宇(4)主成分分析:一種降維分析方法,即將多個存在相關關系的變量化為少數(shù)幾個綜合變量
第9章(5)因子分析:用少數(shù)幾個隨機變量(稱為因子)去描述多個隨機變量之間的協(xié)方差關系
第10章(6)對應分析:把R型因子分析和Q型因子分析有機的結合起來,同時把變量和樣品反映到相同的坐標軸(因子軸)的一張圖上,來說明變量與樣品之間的對應關系
第11章1.1.3多元統(tǒng)計分析的內容2024/7/317主編:費宇(7)典型相關性分析:研究兩組隨機變量之間的相互依賴關系的一種統(tǒng)計分析方法
第12章(8)多維標度法:以空間分布的形式表現(xiàn)對象之間相似性或親疏關系的一種多元分析方法
第13章注意:在進行多元分析時,機器學習方法和經(jīng)典多元統(tǒng)計分析方法各有優(yōu)勢,實際分析中建議采用兩種方法處理,并比較分析的結果,再做出合理的解釋.1.1.3多元統(tǒng)計分析的內容2024/7/318主編:費宇1.2.1為什么用R?R是一個數(shù)據(jù)處理和統(tǒng)計分析軟件系統(tǒng),是基于S語言的軟件系統(tǒng),免費的開源軟件.免費和開放統(tǒng)計和分析功能完善作圖功能強大可移植性強使用靈活1.2R簡介2024/7/319主編:費宇1.2.2R的安裝與運行
1.R的安裝(Windows用戶)(1)打開網(wǎng)址/.(2)點擊“CRAN”獲得一系列按照國家名稱排序的鏡像網(wǎng)站.(3)選擇與你所在地相近的網(wǎng)站.(4)點擊“DownloadandInstallR”下的“DownloadRforWindows”.(5)點擊“base”.(6)點擊鏈接下載最新版本的R軟件(比如點擊“DownloadR3.3.2forWindows”).1.2R簡介2024/7/3110主編:費宇1.2.2R的安裝與運行
2.R的運行安裝完成后點擊桌面上的R-x.x.x圖標就可以啟動R軟件了,在RGui的命令窗口(RConsole)的命令提示符“>”后輸入命令就可以完成相應的操作.如果要退出R系統(tǒng),可以在命令行輸入q(),也可以點擊RGui右上角的“×”.退出時可以保存工作空間,比如將工作空間保存在“C:\Work\”目錄下,名稱為“W.RData”,保存后可以通過命令load("C:\\Work\\W.RData")來加載這個空間,或者通過菜單“文件”下的“載入工作空間”加載.1.2R簡介2024/7/3111主編:費宇1.2.2R的安裝與運行
3.R軟件的程序包的安裝:
(1)菜單方式:程序包
安裝程序包
選擇CRANMirror服務器
選擇要安裝的程序包
(2)命令方式:>install.package(MASS)
(3)本地安裝:程序包
從本地zip文件安裝程序包4.R的新裝程序包載入方式:
(1)菜單方式:程序包
加載程序包
選擇要加載的程序包
(2)命令方式:>library(MASS)1.2R簡介2024/7/3112主編:費宇2008年12月,“第一屆中國R語言會議”統(tǒng)計之都:/統(tǒng)計之都的微信二維碼R在中國2024/7/3113主編:費宇1.2.3如何獲取R的幫助?R的基本知識:在RGui的窗口中選擇“幫助”菜單中的“RFAQ”(R的常見問題)獲得R的特點、安裝、使用、界面和編程規(guī)則等基本知識.“幫助”菜單中的“手冊”提供的8本幫助手冊:AnIntroductiontoR,
RReferenceManual,RDataImport/Export,RLanguageDefinition,WritingRExtensions,RInternals,RInstallationandAdministration,SweaveUser,其中第一本“AnIntroductiontoR”是最基本的手冊.通過命令“>help.start()”也可以獲得類似的幫助.1.1R簡介2024/7/3114主編:費宇有關函數(shù)的含義和使用方法1.help函數(shù)>help(lm)#獲得名為lm()函數(shù)的幫助頁面>?lm#此命令與上面的命令效果一樣>?"<"#獲得“<”運算符的幫助信息>?"for"#獲得for循環(huán)的幫助信息>help(package="MASS")#MASS可以不加引號1.2.3如何獲取R的幫助?2024/7/3115主編:費宇有關函數(shù)的含義和使用方法2.example函數(shù)>example(mean)#運行mean()函數(shù)的例子代碼以下是運行結果mean>x<-c(0:10,50)mean>xm<-mean(x)mean>c(xm,mean(x,trim=0.10))[1]8.755.501.2.3如何獲取R的幫助?2024/7/3116主編:費宇有關函數(shù)的含義和使用方法3.help.search函數(shù)如果不太清楚要查找什么,可以使用help.search()函數(shù)進行搜索.>help.search("multivariatenormal")>??"multivariatenormal"#??是help.search的快捷方式可以得到一個包含下面摘要的信息:MASS::mvrnormSimulatefromaMultivariateNormalDistribution1.2.3如何獲取R的幫助?2024/7/3117主編:費宇(1)R的主頁()上提供了R項目手冊,點擊Manuals即可瀏覽.(2)R的主頁上的選項Search可以按類別來搜索R的相關資源.(3)R的主頁上的選項GettingHelp可以幫助獲得R的相關幫助信息.互聯(lián)網(wǎng)上R的資源2024/7/3118主編:費宇1.2.4R的基本原理1.數(shù)值型向量的建立1.2R簡介2024/7/3119主編:費宇>x1<-seq(2,6,by=1)#生成序列x1=(2,3,4,5,6),"<-"是賦值符號>x2<-c(1,3,5,8,10)#生成一個5維向量x2=(1,3,5,8,10)>x3<-rep(2:4,2)#生成序列x3=(2,3,4,2,3,4)>x4<-c(x1,x2)#生成10維向量x4=(2,3,4,5,6,1,3,5,8,10)>cbind(x1,x2)#將x1和x2按列合并得到如下數(shù)據(jù):x1x2[1,]21[2,]33[3,]45[4,]58[5,]610>rbind(x1,x2)#將x1和x2按行合并得到如下數(shù)據(jù):[,1][,2][,3][,4][,5]x123456x21358101.2R簡介2024/7/3120主編:費宇1.2.4R的基本原理1.數(shù)值型向量的建立2.矩陣的建立1.2R簡介2024/7/3121主編:費宇>A<-matrix(1,nr=2,nc=2)#建立一個所有元素都為1的2階方陣
>B<-diag(3)#生成一個3階單位陣>D<-diag(c(2,3,4))#生成一個對角元素是(2,3,4)的3階方陣>X<-matrix(0,nr=2,nc=3)#建立一個所有元素都為0的2×3階矩陣>x1<-c(2,3,4)>x2<-c(1,2,5)>X<-rbind(x1,x2)#生成一個第1行為x1,第2行為x2的矩陣X>X#顯示矩陣X[,1][,2][,3]x1234x21253.數(shù)據(jù)框的建立(1)直接方式1.2R簡介2024/7/3122主編:費宇>x1<-seq(2,6,by=1)#生成序列x1=(2,3,4,5,6)>x2<-c(1,3,5,8,10)#生成5維向量x2=(1,3,5,8,10)>z.df<-data.frame(x1,x2)#生成數(shù)據(jù)框>z.df#顯示數(shù)據(jù)框z.dfx1x212123334545856103.數(shù)據(jù)框的建立(2)間接方式可以通過讀取數(shù)據(jù)文件(文本文件、Excel文件或其他格式的文件)建立數(shù)據(jù)框,比如讀取數(shù)據(jù)文件“c:\data\eg1.1.txt”中的觀測值(即表1-1中的x和y的值)1.2R簡介2024/7/3123主編:費宇>setwd("c:/data")#設定工作路徑,R中路徑的斜線符號為”/”,與Windows中的相應符號”\”不一樣>dat<-read.table("exam1.1.txt",header=T)#從exam1.1.txt中讀入數(shù)據(jù),header=T表示將eg1.1.txt文件的第1行作為表頭行,也可以寫為header=TRUE,header=F或FALSE則表示文件的第1行不作為表頭行表1-1城鎮(zhèn)居民年人均可支配收入和年人均消費性支出數(shù)據(jù)例1.1(數(shù)據(jù)文件為eg1.1)2024/7/3124主編:費宇地區(qū)可支配收入消費性支出地區(qū)可支配收入消費性支出北
京52859.1736642.00湖
北27051.4718192.28天
津34101.3526229.52湖
南28838.0719501.37河
北26152.1617586.62廣
東34757.1625673.08山
西25827.7215818.61廣
西26415.8716321.16內蒙古30594.1021876.47海
南26356.4218448.35遼
寧31125.7321556.72重
慶27238.8419742.29吉
林24900.8617972.62四
川26205.2519276.85黑龍江24202.6217152.07貴
州24579.6416914.20上
海52961.8636946.12云
南26373.2317674.99江
蘇37173.4824966.04西
藏25456.6317022.01浙
江43714.4828661.27陜
西26420.2118463.87安
徽26935.7617233.53甘
肅23767.0817450.86福
建33275.3423520.19青
海24542.3519200.65江
西26500.1216731.81寧
夏25186.0118983.88山
東31545.2719853.77新
疆26274.6619414.74河
南25575.6117154.30
假定數(shù)據(jù)文件為exam1.1.txt保存在“C:\data”子目錄下,我們先讀入數(shù)據(jù),計算x與y的相關系數(shù)并繪制散點圖。>setwd("c:/data")#設定工作路徑>dat<-read.table("exam1.1.txt",header=T)#讀入數(shù)據(jù)
>cor(dat)#計算x和y的相關系數(shù)xyx1.00000000.9736406y0.97364061.0000000>plot(y~x,data=dat)#繪制x和y的散點圖例1.1(數(shù)據(jù)文件為eg1.1)2024/7/3125主編:費宇圖1-1年人均可支配收入x和年人均消費性支出y的散點圖2024/7/3126主編:費宇>lm.reg<-lm(y~x,data=dat)#建立y關于x的線性回歸>summary(lm.reg)#輸出回歸分析的結果Call:lm(formula=y~x,data=dat)Residuals:Min1QMedian3QMax-2099.8-629.8138.5772.72628.6
Coefficients:EstimateStd.ErrortvaluePr(>|t|)(Intercept)179.43046920.594930.1950.847x0.686820.0298822.988<2e-16***---Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘’1Residualstandarderror:1238on29degreesoffreedomMultipleR-squared:0.948,AdjustedR-squared:0.9462F-statistic:528.4on1and29DF,p-value:<2.2e-16建立y關于x的線性回歸模型2024/7/3127主編:費宇1.多元回歸分析(1)函數(shù)lm():求解線性回歸方程lm.reg<-lm(y~x,data=dat)#用dat中數(shù)據(jù)建立y關于x的線性回歸(2)函數(shù)summary():給出模型的計算結果summary(lm.reg)#顯示lm.reg的內容,即輸出回歸分析的結果(3)函數(shù)confint():求參數(shù)的置信區(qū)間confint(lm.reg,level=0.95)#求lm.reg回歸參數(shù)的95%置信區(qū)間1.2.5本書相關的R程序包和函數(shù)2024/7/3128主編:費宇1.多元回歸分析(4)函數(shù)predict():求預測值和預測區(qū)間x0<-data.frame(x=30000)#給定x0=x=30000predict(lm.reg,x0,interval="prediction",level=0.95)#求x=30000時y的置信度為95%的預測區(qū)間(5)函數(shù)step():完成逐步回歸lm.sal<-lm(y~x1+x2+x3+x4,data=d2.1)#建立全變量回歸方程lm.step<-step(lm.sal,direction="both")#用“一切子集回歸法”來進行逐步回歸1.2.5本書相關的R程序包和函數(shù)2024/7/3129主編:費宇1.多元回歸分析注意:多元回歸分析中用到的lm(),glm(),step(),confint()和predict()等函數(shù)都是程序包stats中的函數(shù);而函數(shù)summary()是程序包base中的函數(shù),因為程序包stats和base是安裝時的基本程序包,所以可以直接使用,不必進行加載.第6章廣義線性回歸模型主要用到函數(shù)glm():g.logit<-glm(y~x,family=binomial,data=d6.1)#建立y關于x的logistic回歸模型,數(shù)據(jù)為d6.1g.ln<-glm(y~x1+x2+x3,family=poisson(link=log),data=d6.2)#建立y關于x1,x2,x3的泊松對數(shù)線性模型,數(shù)據(jù)為d6.21.2.5本書相關的R程序包和函數(shù)2024/7/3130主編:費宇2.聚類分析第7章聚類分析介紹兩種常用的聚類方法----系統(tǒng)聚類法和k均值聚類法.系統(tǒng)聚類法可以用函數(shù)dist()計算距離,然后用函數(shù)hclust()實現(xiàn).d<-dist(d7.1,method="euclidean",diag=T,upper=F,p=2)#采用歐氏距離計算相似矩陣dHC<-hclust(d
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國切割機鎖緊螺母行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國車載倒車雷達后視鏡數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國柴油引擎油數(shù)據(jù)監(jiān)測研究報告
- 工地施工環(huán)保培訓
- 幼兒園一日活動流程教師培訓
- 2024鐵礦石銷售合同中的合同解除條件及程序規(guī)范3篇
- 2025年度項目合作合同:共同開展新能源項目研究3篇
- 二零二五年度軌道交通模具制造合同范本3篇
- 二零二五年度VIP客戶專屬權益合作協(xié)議3篇
- 2024版綜合交通樞紐房屋補償3篇
- 綿陽市高中2022級(2025屆)高三第二次診斷性考試(二診)歷史試卷(含答案)
- 四年級數(shù)學(上)計算題專項練習及答案
- 期末測試卷(試題)-2024-2025學年四年級上冊數(shù)學滬教版
- GB/T 6672-2001塑料薄膜和薄片厚度測定機械測量法
- SSB變槳系統(tǒng)的基礎知識
- GB∕T 27552-2021 金屬材料焊縫破壞性試驗 焊接接頭顯微硬度試驗
- 外貿中常見付款方式的英文表達及簡要說明
- 抗壓偏壓混凝土柱承載力計算表格
- 初次申領《南京市建筑業(yè)企業(yè)信用管理手冊(電子版)》辦事
- 中國移動呼叫中心運營管理指標體系
- 醫(yī)院設計規(guī)范
評論
0/150
提交評論