版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省自貢市高新區(qū)六校2024屆中考數(shù)學對點突破模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,,則DE:EC=()A.2:5 B.2:3 C.3:5 D.3:22.下列方程中,兩根之和為2的是()A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=03.已知兩組數(shù)據,2、3、4和3、4、5,那么下列說法正確的是()A.中位數(shù)不相等,方差不相等B.平均數(shù)相等,方差不相等C.中位數(shù)不相等,平均數(shù)相等D.平均數(shù)不相等,方差相等4.甲、乙兩人同時分別從A,B兩地沿同一條公路騎自行車到C地.已知A,C兩地間的距離為110千米,B,C兩地間的距離為100千米.甲騎自行車的平均速度比乙快2千米/時.結果兩人同時到達C地.求兩人的平均速度,為解決此問題,設乙騎自行車的平均速度為x千米/時.由題意列出方程.其中正確的是()A. B. C. D.5.如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有()A.2個 B.3個 C.4個 D.5個6.如圖,數(shù)軸上有A,B,C,D四個點,其中表示互為倒數(shù)的點是()A.點A與點B B.點A與點D C.點B與點D D.點B與點C7.已知關于x的一元二次方程有實數(shù)根,則m的取值范圍是()A. B. C. D.8.大箱子裝洗衣粉36千克,把大箱子里的洗衣粉分裝在4個大小相同的小箱子里,裝滿后還剩余2千克洗衣粉,則每個小箱子裝洗衣粉(
)A.6.5千克B.7.5千克C.8.5千克D.9.5千克9.把直線l:y=kx+b繞著原點旋轉180°,再向左平移1個單位長度后,經過點A(-2,0)和點B(0,4),則直線l的表達式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-210.李老師在編寫下面這個題目的答案時,不小心打亂了解答過程的順序,你能幫他調整過來嗎?證明步驟正確的順序是已知:如圖,在中,點D,E,F(xiàn)分別在邊AB,AC,BC上,且,,求證:∽.證明:又,,,,∽.A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,等邊△ABC的邊長為1cm,D、E分別是AB、AC邊上的點,將△ADE沿直線DE折疊,點A落在點處,且點在△ABC的外部,則陰影部分圖形的周長為_____cm.12.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為_____.13.圖①是一個三角形,分別連接這個三角形的中點得到圖②;再分別連接圖②中間小三角形三邊的中點,得到圖③.按上面的方法繼續(xù)下去,第n個圖形中有_____個三角形(用含字母n的代數(shù)式表示).14.如圖,四邊形ABCD內接于⊙O,AB是⊙O的直徑,過點C作⊙O的切線交AB的延長線于點P,若∠P=40°,則∠ADC=____°.15.如圖,在Rt△ABC中,∠C=90°,AM是BC邊上的中線,cos∠AMC,則tan∠B的值為__________.16.比較大?。篲____.(填“<“,“=“,“>“)17.股市規(guī)定:股票每天的漲、跌幅均不超過10%,即當漲了原價的10%后,便不能再漲,叫做漲停;當?shù)嗽瓋r的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后兩天時間又漲回到原價,若這兩天此股票股價的平均增長率為x,則x滿足的方程是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a、b滿足+|b﹣6|=0,點B在第一象限內,點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.a=,b=,點B的坐標為;當點P移動4秒時,請指出點P的位置,并求出點P的坐標;在移動過程中,當點P到x軸的距離為5個單位長度時,求點P移動的時間.19.(5分)如圖,在△ABC中,D為AC上一點,且CD=CB,以BC為直徑作☉O,交BD于點E,連接CE,過D作DFAB于點F,∠BCD=2∠ABD.(1)求證:AB是☉O的切線;(2)若∠A=60°,DF=,求☉O的直徑BC的長.20.(8分)某超市在春節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉動轉盤的方式享受折扣和優(yōu)惠,在每個轉盤中指針指向每個區(qū)域的可能性均相同,若指針指向分界線,則重新轉動轉盤,區(qū)域對應的優(yōu)惠方式如下,A1,A2,A3區(qū)域分別對應9折8折和7折優(yōu)惠,B1,B2,B3,B4區(qū)域對應不優(yōu)惠?本次活動共有兩種方式.方式一:轉動轉盤甲,指針指向折扣區(qū)域時,所購物品享受對應的折扣優(yōu)惠,指針指向其他區(qū)域無優(yōu)惠;方式二:同時轉動轉盤甲和轉盤乙,若兩個轉盤的指針均指向折扣區(qū)域時,所購物品享受折上折的優(yōu)惠,其他情況無優(yōu)惠.(1)若顧客選擇方式一,則享受優(yōu)惠的概率為;(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能顧客享受折上折優(yōu)惠的概率.21.(10分)如圖1所示是一輛直臂高空升降車正在進行外墻裝飾作業(yè).圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉動點A離地面BD的高度AH為2m.當起重臂AC長度為8m,張角∠HAC為118°時,求操作平臺C離地面的高度.(果保留小數(shù)點后一位,參考數(shù)據:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)22.(10分)計算:+2〡6tan3023.(12分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.求證:四邊形ACDF是平行四邊形;當CF平分∠BCD時,寫出BC與CD的數(shù)量關系,并說明理由.24.(14分)如圖,矩形ABCD中,點E為BC上一點,DF⊥AE于點F,求證:∠AEB=∠CDF.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
∵四邊形ABCD是平行四邊形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故選B2、B【解析】
由根與系數(shù)的關系逐項判斷各項方程的兩根之和即可.【詳解】在方程x2+2x-3=0中,兩根之和等于-2,故A不符合題意;在方程x2-2x-3=0中,兩根之和等于2,故B符合題意;在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,則該方程無實數(shù)根,故C不符合題意;在方程4x2-2x-3=0中,兩根之和等于-,故D不符合題意,故選B.【點睛】本題主要考查根與系數(shù)的關系,掌握一元二次方程的兩根之和等于-、兩根之積等于是解題的關鍵.3、D【解析】
分別利用平均數(shù)以及方差和中位數(shù)的定義分析,進而求出答案.【詳解】2、3、4的平均數(shù)為:(2+3+4)=3,中位數(shù)是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數(shù)為:(3+4+5)=4,中位數(shù)是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數(shù)不相等,方差相等.故選:D.【點睛】本題考查了平均數(shù)、中位數(shù)、方差的意義,解答本題的關鍵是熟練掌握這三種數(shù)的計算方法.4、A【解析】設乙騎自行車的平均速度為x千米/時,則甲騎自行車的平均速度為(x+2)千米/時,根據題意可得等量關系:甲騎110千米所用時間=乙騎100千米所用時間,根據等量關系可列出方程即可.解:設乙騎自行車的平均速度為x千米/時,由題意得:=,故選A.5、C【解析】
試題分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯誤;綜上所述,結論正確的是①②③④共4個.故選C.【點睛】考點:1、矩形的性質;2、全等三角形的判定與性質;3、角平分線的性質;4、等腰三角形的判定與性質6、A【解析】
試題分析:主要考查倒數(shù)的定義和數(shù)軸,要求熟練掌握.需要注意的是:倒數(shù)的性質:負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).根據倒數(shù)定義可知,-2的倒數(shù)是-,有數(shù)軸可知A對應的數(shù)為-2,B對應的數(shù)為-,所以A與B是互為倒數(shù).故選A.考點:1.倒數(shù)的定義;2.數(shù)軸.7、C【解析】
解:∵關于x的一元二次方程有實數(shù)根,∴△==,解得m≥1,故選C.【點睛】本題考查一元二次方程根的判別式.8、C【解析】【分析】設每個小箱子裝洗衣粉x千克,根據題意列方程即可.【詳解】設每個小箱子裝洗衣粉x千克,由題意得:4x+2=36,解得:x=8.5,即每個小箱子裝洗衣粉8.5千克,故選C.【點睛】本題考查了列一元一次方程解實際問題,弄清題意,找出等量關系是解答本題的關鍵.9、B【解析】
先利用待定系數(shù)法求出直線AB的解析式,再求出將直線AB向右平移1個單位長度后得到的解析式,然后將所得解析式繞著原點旋轉180°即可得到直線l.【詳解】解:設直線AB的解析式為y=mx+n.∵A(?2,0),B(0,1),∴-2m+n=0n=4解得m=2n=4∴直線AB的解析式為y=2x+1.將直線AB向右平移1個單位長度后得到的解析式為y=2(x?1)+1,即y=2x+2,再將y=2x+2繞著原點旋轉180°后得到的解析式為?y=?2x+2,即y=2x?2,所以直線l的表達式是y=2x?2.故選:B.【點睛】本題考查了一次函數(shù)圖象平移問題,掌握解析式“左加右減”的規(guī)律以及關于原點對稱的規(guī)律是解題的關鍵.10、B【解析】
根據平行線的性質可得到兩組對應角相等,易得解題步驟;【詳解】證明:,,又,,∽.故選B.【點睛】本題考查了相似三角形的判定與性質;關鍵是證明三角形相似.二、填空題(共7小題,每小題3分,滿分21分)11、3【解析】
由折疊前后圖形全等,可將陰影部分圖形的周長轉化為三角形周長.【詳解】∵△A'DE與△ADE關于直線DE對稱,∴AD=A'D,AE=A'E,C陰影=BC+A'D+A'E+BD+EC=BC+AD+AE+BD+EC=BC+AB+AC=3cm.故答案為3.【點睛】由圖形軸對稱可以得到對應的邊相等、角相等.12、1;【解析】分析:根據輔助線做法得出CF⊥AB,然后根據含有30°角的直角三角形得出AB和BF的長度,從而得出AF的長度.詳解:∵根據作圖法則可得:CF⊥AB,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,∵∠CFB=90°,∠B=10°,∴BF=BC=2,∴AF=AB-BF=8-2=1.點睛:本題主要考查的是含有30°角的直角三角形的性質,屬于基礎題型.解題的關鍵就是根據作圖法則得出直角三角形.13、4n﹣1【解析】
分別數(shù)出圖、圖、圖中的三角形的個數(shù),可以發(fā)現(xiàn):第幾個圖形中三角形的個數(shù)就是4與幾的乘積減去如圖中三角形的個數(shù)為按照這個規(guī)律即可求出第n各圖形中有多少三角形.【詳解】分別數(shù)出圖、圖、圖中的三角形的個數(shù),圖中三角形的個數(shù)為;圖中三角形的個數(shù)為;圖中三角形的個數(shù)為;可以發(fā)現(xiàn),第幾個圖形中三角形的個數(shù)就是4與幾的乘積減去1.按照這個規(guī)律,如果設圖形的個數(shù)為n,那么其中三角形的個數(shù)為.故答案為.【點睛】此題主要考查學生對圖形變化類這個知識點的理解和掌握,解答此類題目的關鍵是根據題目中給出的圖形,數(shù)據等條件,通過認真思考,歸納總結出規(guī)律,此類題目難度一般偏大,屬于難題.14、115°【解析】
根據過C點的切線與AB的延長線交于P點,∠P=40°,可以求得∠OCP和∠OBC的度數(shù),又根據圓內接四邊形對角互補,可以求得∠D的度數(shù),本題得以解決.【詳解】解:連接OC,如右圖所示,
由題意可得,∠OCP=90°,∠P=40°,
∴∠COB=50°,
∵OC=OB,
∴∠OCB=∠OBC=65°,
∵四邊形ABCD是圓內接四邊形,
∴∠D+∠ABC=180°,
∴∠D=115°,
故答案為:115°.【點睛】本題考查切線的性質、圓內接四邊形,解題的關鍵是明確題意,找出所求問題需要的條件.15、【解析】
根據cos∠AMC,設,,由勾股定理求出AC的長度,根據中線表達出BC即可求解.【詳解】解:∵cos∠AMC,,設,,∴在Rt△ACM中,∵AM是BC邊上的中線,∴BM=MC=3x,∴BC=6x,∴在Rt△ABC中,,故答案為:.【點睛】本題考查了銳角三角函數(shù)值的求解問題,解題的關鍵是熟記銳角三角函數(shù)的定義.16、<【解析】
先比較它們的平方,進而可比較與的大小.【詳解】()2=80,()2=100,∵80<100,∴<.故答案為:<.【點睛】本題考查了實數(shù)的大小比較,帶二次根號的實數(shù),在比較它們的大小時,通常先比較它們的平方的大小.17、.【解析】
股票一次跌停就跌到原來價格的90%,再從90%的基礎上漲到原來的價格,且漲幅只能≤10%,設這兩天此股票股價的平均增長率為x,每天相對于前一天就上漲到1+x,由此列出方程解答即可.【詳解】設這兩天此股票股價的平均增長率為x,由題意得(1﹣10%)(1+x)2=1.故答案為:(1﹣10%)(1+x)2=1.【點睛】本題主要考查了由實際問題抽象出一元二次方程,關鍵是掌握平均變化率的方法,若設變化前的量為,變化后的量為,平均變化率為,則經過兩次變化后的數(shù)量關系為三、解答題(共7小題,滿分69分)18、(1)4,6,(4,6);(2)點P在線段CB上,點P的坐標是(2,6);(3)點P移動的時間是2.5秒或5.5秒.【解析】試題分析:(1)根據可以求得的值,根據長方形的性質,可以求得點的坐標;
(2)根據題意點從原點出發(fā),以每秒2個單位長度的速度沿著的線路移動,可以得到當點移動4秒時,點的位置和點的坐標;
(3)由題意可以得到符合要求的有兩種情況,分別求出兩種情況下點移動的時間即可.試題解析:(1)∵a、b滿足∴a?4=0,b?6=0,解得a=4,b=6,∴點B的坐標是(4,6),故答案是:4,6,(4,6);(2)∵點P從原點出發(fā),以每秒2個單位長度的速度沿著O?C?B?A?O的線路移動,∴2×4=8,∵OA=4,OC=6,∴當點P移動4秒時,在線段CB上,離點C的距離是:8?6=2,即當點P移動4秒時,此時點P在線段CB上,離點C的距離是2個單位長度,點P的坐標是(2,6);(3)由題意可得,在移動過程中,當點P到x軸的距離為5個單位長度時,存在兩種情況,第一種情況,當點P在OC上時,點P移動的時間是:5÷2=2.5秒,第二種情況,當點P在BA上時,點P移動的時間是:(6+4+1)÷2=5.5秒,故在移動過程中,當點P到x軸的距離為5個單位長度時,點P移動的時間是2.5秒或5.5秒.19、(1)證明過程見解析;(2)【解析】
(1)根據CB=CD得出∠CBD=∠CDB,然后結合∠BCD=2∠ABD得出∠ABD=∠BCE,從而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切線;(2)根據Rt△AFD和Rt△BFD的性質得出AF和DF的長度,然后根據△ADF和△ACB相似得出相似比,從而得出BC的長度.【詳解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足為B又∵CB為直徑∴AB是⊙O的切線.(2)∵∠A=60°,DF=∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB∠A=∠A∴△ADF∽△ACB∴即解得:CB=考點:(1)圓的切線的判定;(2)三角函數(shù);(3)三角形相似的判定20、(1);(2).【解析】
(1)根據題意和圖形,可以求得顧客選擇方式一,享受優(yōu)惠的概率;(2)根據題意可以畫出相應的樹狀圖,從而可以求得相應的概率.【詳解】解:(1)由題意可得,顧客選擇方式一,則享受優(yōu)惠的概率為:,故答案為:;(2)樹狀圖如下圖所示,則顧客享受折上折優(yōu)惠的概率是:,即顧客享受折上折優(yōu)惠的概率是.【點睛】本題考查列表法與樹狀圖法,解答本題的關鍵是明確題意,列出相應的樹狀圖,求出相應的概率.21、5.8【解析】
過點作于點,過點作于點,易得四邊形為矩形,則,再計算出,在中,利用正弦可計算出CF的長度,然后計算CF+EF即可.【詳解】解:如圖,過點作于點,過點作于點,.又,.∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消毒劑與微生物相互作用-洞察分析
- 水產養(yǎng)殖中魚病的預防與控制技術研究-洞察分析
- 冬季防火人人有責精彩講話稿(5篇)
- 辦公室文化與高效報告文化構建
- 豬肉加工廠設備采購招標合同三篇
- 辦公用品在小紅書的社交化銷售策略研究
- 個性化字體在多媒體中的運用
- 辦公環(huán)境中嵌入式系統(tǒng)的節(jié)能設計挑戰(zhàn)與解決方案
- 專業(yè)師資的跨界交流與合作機會探討
- 辦公室服務升級與客戶體驗的關聯(lián)分析
- 人教版教材《原子的結構》推薦3課件
- 基于PLC的禽舍環(huán)境控制系統(tǒng)設計
- 【詳細版】小學英語人教新起點四年級下冊Unit4Hobbies王露22一師一優(yōu)課課例教案
- 廣東省綜合評標專家?guī)煸囶}
- 焦化學產品及硫銨工藝
- 淺談爐水中氯離子濃度高的原因分析與防止
- 鋁合金壓鑄件的標準
- 浙美版三年級上冊美術試卷(共4頁)
- 航空開傘器機械大報告
- 關于人工費結清證明
- 全國國防教育示范學校形象標識、金屬牌匾樣式
評論
0/150
提交評論