版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年八上數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.要使在實(shí)數(shù)范圍內(nèi)有意義,應(yīng)滿足的條件是()A. B. C. D.2.甲車行駛30千米與乙車行駛40千米所用時(shí)間相同,已知乙車每小時(shí)比甲車多行駛15千米,設(shè)甲車的速度為千米/小時(shí),依據(jù)題意列方程正確的是()A. B. C. D.3.下列實(shí)數(shù)中,屬于無(wú)理數(shù)的是()A. B.2﹣3 C.π D.4.如圖,為估計(jì)池塘岸邊A、B的距離,小方在池塘的一側(cè)選取一點(diǎn)O,測(cè)得OA=15米,OB=10米,A、B間的距離不可能是()A.20米 B.15米 C.10米 D.5米5.小明通常上學(xué)時(shí)走上坡路,通常的速度為m千米時(shí),放學(xué)回家時(shí),原路返回,通常的速度為n千米時(shí),則小明上學(xué)和放學(xué)路上的平均速度為()千米/時(shí)A. B. C. D.6.如圖,△ABC中,點(diǎn)D為BC上一點(diǎn),且AB=AC=CD,則圖中∠1和∠2的數(shù)量關(guān)系是()A.2∠1+3∠2=180° B.2∠1+∠2=90°C.2∠1=3∠2 D.∠1+3∠2=90°7.根據(jù)下列條件,只能畫出唯一的△ABC的是()A.AB=3BC=4 B.AB=4BC=3∠A=30°C.∠A=60°∠B=45°AB=4 D.∠C=60°AB=58.直角坐標(biāo)系中,點(diǎn)在一次函數(shù)的圖象上,則的值是()A. B. C. D.9.已知方程組的解是,則的值為()A.1 B.2 C.3 D.010.如果y=x-2a+1是正比例函數(shù),則a的值是()A. B.0 C. D.-211.如圖,在平面直角坐標(biāo)系中,,點(diǎn)、、、在軸上,點(diǎn)、、…在射線上,、、……均為等邊三角形,若點(diǎn)坐標(biāo)是,那么點(diǎn)坐標(biāo)是()A.(6,0) B.(12,0) C.(16,0) D.(32,0)12.下列各式是最簡(jiǎn)分式的是()A. B.C. D.二、填空題(每題4分,共24分)13.計(jì)算:_______________.14.當(dāng)x=______________時(shí),分式的值是0?15.如圖,在△ABC中,AB=AC,AB的垂直平分線DE交CA的延長(zhǎng)線于點(diǎn)E,垂足為D,∠C=26°,則∠EBA=_____°.16.下列圖形是由一些小正方形和實(shí)心圓按一定規(guī)律排列而成的,如圖所示,按此規(guī)律排列下去,第n個(gè)圖形中有_____個(gè)實(shí)心圓.17.如圖,ABCDE是正五邊形,△OCD是等邊三角形,則∠COB=_____°.18.已知CD是Rt△ABC的斜邊AB上的中線,若∠A=35°,則∠BCD=_____________.三、解答題(共78分)19.(8分)如圖1,點(diǎn)P,Q分別是等邊△ABC邊AB,BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ,CP交于點(diǎn)M.(1)求證:△ABQ△CAP;(2)如圖1,當(dāng)點(diǎn)P,Q分別在AB,BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,求出它的度數(shù).(3)如圖2,若點(diǎn)P,Q在分別運(yùn)動(dòng)到點(diǎn)B和點(diǎn)C后,繼續(xù)在射線AB,BC上運(yùn)動(dòng),直線AQ,CP交點(diǎn)為M,則∠QMC=度.(直接填寫度數(shù))20.(8分)如圖1,已知矩形ABCD,連接AC,將△ABC沿AC所在直線翻折,得到△AEC,AE交CD于點(diǎn)F.(1)求證:DF=EF;(2)如圖2,若∠BAC=30°,點(diǎn)G是AC的中點(diǎn),連接DE,EG,求證:四邊形ADEG是菱形.21.(8分)已知方程組的解是,則方程組的解是_________.22.(10分)九年級(jí)學(xué)生到距離學(xué)校6千米的百花公園去春游,一部分學(xué)生步行前往,20分鐘后另一部分學(xué)生騎自行車前往,設(shè)(分鐘)為步行前往的學(xué)生離開學(xué)校所走的時(shí)間,步行學(xué)生走的路程為千米,騎自行車學(xué)生騎行的路程為千米,關(guān)于的函數(shù)圖象如圖所示.(1)求關(guān)于的函數(shù)解析式;(2)步行的學(xué)生和騎自行車的學(xué)生誰(shuí)先到達(dá)百花公園,先到了幾分鐘?23.(10分)解方程:=-.24.(10分)計(jì)算:解方程組:25.(12分)如圖,△ABC中,AB=13cm,BC=10cm,AD是BC的中線,且AD=12cm.(1)求AC的長(zhǎng);(2)求△ABC的面積.26.如圖,在等邊△ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)為點(diǎn)D,連接AD,BD,其中BD交直線AP于點(diǎn)E(點(diǎn)E不與點(diǎn)A重合).(1)若∠CAP=20°.①求∠AEB=°;②連結(jié)CE,直接寫出AE,BE,CE之間的數(shù)量關(guān)系.(2)若∠CAP=α(0°<α<120°).①∠AEB的度數(shù)是否發(fā)生變化,若發(fā)生變化,請(qǐng)求出∠AEB度數(shù);②AE,BE,CE之間的數(shù)量關(guān)系是否發(fā)生變化,并證明你的結(jié)論.
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)二次根式的被開方數(shù)大于等于0列式求解即可.【詳解】解:根據(jù)題意得,x-1≥0,
解得x≥1.
故選:C.【點(diǎn)睛】本題考查了二次根式有意義的條件,熟練掌握二次根式的被開方數(shù)是非負(fù)數(shù)是解題的關(guān)鍵.2、C【解析】由實(shí)際問(wèn)題抽象出方程(行程問(wèn)題).【分析】∵甲車的速度為千米/小時(shí),則乙甲車的速度為千米/小時(shí)∴甲車行駛30千米的時(shí)間為,乙車行駛40千米的時(shí)間為,∴根據(jù)甲車行駛30千米與乙車行駛40千米所用時(shí)間相同得.故選C.3、C【分析】無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù).【詳解】解:是分?jǐn)?shù)可以化為無(wú)限循環(huán)小數(shù),屬于有理數(shù),故選項(xiàng)A不合題意;,是分?jǐn)?shù),屬于有理數(shù),故選項(xiàng)B不合題意;π是無(wú)理數(shù),故選項(xiàng)C符合題意;,是整數(shù),故選項(xiàng)D不合題意.故選:C.【點(diǎn)睛】理解無(wú)理數(shù)的概念,同時(shí)也需要理解有理數(shù)的概念,有理數(shù)是整數(shù)與分?jǐn)?shù)的統(tǒng)稱.即有限小數(shù)和無(wú)限循環(huán)小數(shù)是有理數(shù),而無(wú)限不循環(huán)小數(shù)是無(wú)理數(shù).4、D【解析】∵5<AB<25,∴A、B間的距離不可能是5,故選D.5、C【分析】平均速度總路程總時(shí)間,題中沒(méi)有單程,可設(shè)從家到學(xué)校的單程為2,那么總路程為2.【詳解】解:依題意得:.故選:C.【點(diǎn)睛】本題考查了列代數(shù)式;解決問(wèn)題的關(guān)鍵是讀懂題意,找到關(guān)鍵描述語(yǔ),進(jìn)而找到所求的量的等量關(guān)系.當(dāng)題中沒(méi)有一些必須的量時(shí),為了簡(jiǎn)便,可設(shè)其為2.6、A【分析】先根據(jù)AB=AC=CD可求出∠2=∠C,∠ADC=∠CAD,再根據(jù)三角形內(nèi)角和定理可得2∠ADC=180°﹣∠C=180°﹣∠2,由三角形內(nèi)角與外角的性質(zhì)可得∠ADC=∠1+∠2,聯(lián)立即可求解.【詳解】解:∵AB=AC=CD,∴∠2=∠C,∠ADC=∠CAD,又∵2∠ADC=180°﹣∠C=180°﹣∠2,∠ADC=∠1+∠2,∴2(∠1+∠2)=180°﹣∠2,即2∠1+3∠2=180°.故選A.【點(diǎn)睛】本題考查三角形內(nèi)角和定理、三角形內(nèi)角與外角的性質(zhì),解題的關(guān)鍵是掌握三角形內(nèi)角和定理、三角形內(nèi)角與外角的性質(zhì).7、C【解析】由所給邊、角條件只能畫出唯一的△ABC,說(shuō)明當(dāng)按所給條件畫兩次時(shí),得到的兩個(gè)三角形是全等的,即所給條件要符合三角形全等的判定方法;而在四個(gè)選項(xiàng)中,當(dāng)兩個(gè)三角形分別滿足A、B、D三個(gè)選項(xiàng)中所列邊、角對(duì)應(yīng)相等時(shí),兩三角形不一定全等;當(dāng)兩個(gè)三角形滿足C選項(xiàng)中所列邊、角對(duì)應(yīng)相等時(shí),三角形是一定全等的.故選C.8、A【分析】直接把點(diǎn)的坐標(biāo)代入解析式得到a的一元一次方程,解方程即可.【詳解】∵點(diǎn)在一次函數(shù)的圖象上,∴3a+1=4解得,a=1,故選:A.【點(diǎn)睛】本題主要考查一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,把點(diǎn)的坐標(biāo)代入求解一元一次方程即可.9、C【分析】將代入求出m、n的值,再計(jì)算的值即可.【詳解】將代入可得,則.故選C.【點(diǎn)睛】本題考查方程組的解,解題的關(guān)鍵是將將代入求出m、n的值.10、A【分析】根據(jù)正比例函數(shù)的定義求解即可.【詳解】解:∵y=x-2a+1是正比例函數(shù),∴可得-2a+1=0解得a=,故選:A.【點(diǎn)睛】本題考查了正比例函數(shù)的定義,掌握知識(shí)點(diǎn)是解題關(guān)鍵.11、D【分析】根據(jù)等邊三角形的性質(zhì)得出,然后利用三角形外角的性質(zhì)得出,從而有,然后進(jìn)行計(jì)算即可.【詳解】∵,,…,均為等邊三角形,.,,,.∵點(diǎn)坐標(biāo)是,,,同理,,∴點(diǎn)坐標(biāo)是.故選:D.【點(diǎn)睛】本題主要考查點(diǎn)的坐標(biāo)的規(guī)律,掌握等邊三角形的性質(zhì)和三角形外角的性質(zhì)是解題的關(guān)鍵.12、B【分析】依次化簡(jiǎn)各分式,判斷即可.【詳解】A、,選項(xiàng)錯(cuò)誤;B、無(wú)法再化簡(jiǎn),選項(xiàng)正確;C、,選項(xiàng)錯(cuò)誤;D、,選項(xiàng)錯(cuò)誤;故選B.【點(diǎn)睛】本題是對(duì)最簡(jiǎn)分式的考查,熟練掌握分式化簡(jiǎn)是解決本題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】先把化成,再根據(jù)同底數(shù)冪的乘法計(jì)算即可.【詳解】解:原式=.【點(diǎn)睛】本題是對(duì)同底數(shù)冪乘法的考查,熟記同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.14、-1【解析】由題意得,解之得.15、1【分析】先根據(jù)等邊對(duì)等角求得∠ABC=∠C=26°,再利用三角形的外角的性質(zhì)求得∠EAB=1°,再根據(jù)垂直平分線的性質(zhì)得:EB=EA,最后再運(yùn)用等邊對(duì)等角,即可解答.【詳解】解:∵AB=AC,∴∠ABC=∠C=26°,∵∠EAB=∠ABC+∠C=1°,∵DE垂直平分AB,∴EB=EA,∴∠EBA=∠EAB=1°,故答案為1.【點(diǎn)睛】本題考查了等腰三角形和垂直平分線的性質(zhì),其中掌握等腰三角形的性質(zhì)是解答本題的關(guān)鍵.16、1n+1.【詳解】解:∵第1個(gè)圖形中有4個(gè)實(shí)心圓,第1個(gè)圖形中有4+1=6個(gè)實(shí)心圓,第3個(gè)圖形中有4+1×1=8個(gè)實(shí)心圓,…∴第n個(gè)圖形中有4+1(n﹣1)=1n+1個(gè)實(shí)心圓,故答案為1n+1.17、66°【分析】根據(jù)題意和多邊形的內(nèi)角和公式,可得正五邊形的一個(gè)內(nèi)角是108°,再根據(jù)等邊三角形的性質(zhì)和等腰三角形的性質(zhì)計(jì)算即可.【詳解】解:∵五邊形ABCDE是正五邊形,∴∠BCD=108°,CD=BC,∵△OCD是等邊三角形,∴∠OCD=60°,OC=CD,∴OC=BC,∠OCB=108°﹣60°=48°,∴∠COB==66°.故答案為:66°.【點(diǎn)睛】本題主要考察了多邊形的內(nèi)角和,關(guān)鍵是得出正五邊形一個(gè)內(nèi)角的度數(shù)為108°,以及找出△OBC是等腰三角形.18、55°【分析】這道題可以根據(jù)CD為斜邊AB的中線得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,則∠BCD=90°-35°=55°.【詳解】如圖,∵CD為斜邊AB的中線∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°則∠BCD=90°-35°=55°故填:55°.【點(diǎn)睛】此題主要考查三角形內(nèi)角度求解,解題的關(guān)鍵是熟知直角三角形的性質(zhì).三、解答題(共78分)19、(1)見解析;(2)點(diǎn)P、Q在AB、BC邊上運(yùn)動(dòng)的過(guò)程中,∠QMC不變,∠QMC=60°,理由見解析;(3)120.【分析】(1)根據(jù)等邊三角形的性質(zhì),利用SAS證明△ABQ≌△CAP即可;(2)由(1)可知△ABQ≌△CAP,所以∠BAQ=∠ACP,再根據(jù)三角形外角性質(zhì)可求出∠QMC;(3)先證△ABQ≌△CAP,根據(jù)全等三角形的性質(zhì)可得∠BAQ=∠ACP,再根據(jù)三角形外角性質(zhì)可求出∠QMC;【詳解】(1)證明:如圖1,∵△ABC是等邊三角形∴∠ABQ=∠CAP=60°,AB=CA,又∵點(diǎn)P、Q運(yùn)動(dòng)速度相同,∴AP=BQ,在△ABQ與△CAP中,∴△ABQ≌△CAP(SAS);(2)點(diǎn)P、Q在AB、BC邊上運(yùn)動(dòng)的過(guò)程中,∠QMC不變,∠QMC=60°.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC是△ACM的外角,∴∠QMC=∠ACP+∠MAC=∠BAQ+∠MAC=∠BAC∵∠BAC=60°,∴∠QMC=60°;(3)如圖2,∵△ABC是等邊三角形∴∠ABQ=∠CAP=60°,AB=CA,又∵點(diǎn)P、Q運(yùn)動(dòng)速度相同,∴AP=BQ,在△ABQ與△CAP中,∴△ABQ≌△CAP(SAS);∴∠BAQ=∠ACP,∵∠QMC是△APM的外角,∴∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°?∠PAC=180°?60°=120°,故答案為120.【點(diǎn)睛】本題考查全等三角形的動(dòng)點(diǎn)問(wèn)題,熟練掌握等邊三角形的性質(zhì)得到全等三角形,并由三角形外角性質(zhì)進(jìn)行角度轉(zhuǎn)換是解決本題的關(guān)鍵.20、(1)證明見詳解;(2)證明見詳解.【分析】(1)根據(jù)矩形的性質(zhì)得到AD=BC,∠D=∠B=90°,由折疊的性質(zhì)得到∠E=∠B=90°,CE=BC.根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)根據(jù)折疊的性質(zhì)得到∠AEC=∠B=90°,CE=BC,根據(jù)直角三角形的性質(zhì)得到CE=AC,CE=AG=EG=AD,根據(jù)菱形的判定定理即可得到結(jié)論.【詳解】解:(1)∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°.∵將△ABC沿AC所在直線翻折,得到△AEC,∴∠E=∠B=90°,CE=BC,∴∠D=∠E,AD=CE.∵∠AFD=∠CFE,∴△ADF≌△CEF(AAS),∴DF=EF;(2)∵四邊形ABCD是矩形,∴AD=BC,∠ADC=∠B=90°.∵將△ABC沿AC所在直線翻折,得到△AEC,∴∠AEC=∠B=90°,CE=BC.∵∠CAB=30°,∴∠CAE=30°,∴CEAC.∵點(diǎn)G是AC的中點(diǎn),∴CE=AG=EG=AD,∴∠AEG=∠EAG=30°,∴∠DAE=30°,∴∠DAE=∠AEG,∴AD∥GE,∴四邊形ADEG是菱形.【點(diǎn)睛】本題考查了翻折變換((折疊問(wèn)題)),矩形的性質(zhì),菱形的判定,直角三角形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.21、【解析】試題分析:根據(jù)題意,把方程組的解代入,可得,把①和②分別乘以5可得,和所求方程組比較,可知,因此方程組的解為.22、;(2)騎自行車的學(xué)生先到達(dá)百花公園,先到了10分鐘.【分析】(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得關(guān)于的函數(shù)解析式;(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)和題意可以分別求得步行學(xué)生和騎自行車學(xué)生到達(dá)百花公園的時(shí)間,從而可以解答本題.【詳解】解:(1)設(shè)關(guān)于的函數(shù)解析式是,,得,即關(guān)于的函數(shù)解析式是;(2)由圖象可知,步行的學(xué)生的速度為:千米/分鐘,步行同學(xué)到達(dá)百花公園的時(shí)間為:(分鐘),當(dāng)時(shí),,得,,答:騎自行車的學(xué)生先到達(dá)百花公園,先到了10分鐘.【點(diǎn)睛】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.23、【分析】先確定最簡(jiǎn)公分母是,將方程兩邊同時(shí)乘以最簡(jiǎn)公分母約去分母可得:,然后解一元一次方程,最后再代入最簡(jiǎn)公分母進(jìn)行檢驗(yàn).【詳解】去分母得:,解得:,經(jīng)檢驗(yàn)是分式方程的解.【點(diǎn)睛】本題主要考查解分式方程的方法,解決本題的關(guān)鍵是要熟練掌握解分式方程的方法和步驟.24、(1)5;(2).【解析】(1)先利用完全平方公式計(jì)算,再利用二次根式的乘法法則運(yùn)算,然后合并即可;(2)先把方程組中的方程化為不含分母的方程,再用加減消元法或代入消元法求解即可.【詳解】解:原式;方程組整理,得:,,得:,解得,將代入,得:,解得,所以方程組的解為.故答案為:(1)5;(2).【點(diǎn)睛】本題考查了二次根式的混合運(yùn)算和解二元一次方程組.25、(1)AC=13cm;(1)2cm1.【分析】(1)根據(jù)已知及勾股定理的逆定理可得△ABD,△ADC是直角三角形,從而不難求得AC的長(zhǎng).(1)先根據(jù)三線合一可知:AD是高,由三角形面積公式即可得到結(jié)論.【詳解】(1)∵D是BC的中點(diǎn),BC=10cm,∴DC=BD=5cm.∵BD1+AD1=144+15=169,AB1=169,∴BD1+AD1=AB1,∴△ABD是直角三角形,且∠ADB=90°,∴△ADC也是直角三角形,且AC是斜邊,∴AC1=AD1+DC1=AB1,∴AC=13(cm).(1)∵AB=AC=13,BD=CD,∴AD⊥BC,∴S△ABC=BC?AD=×10×11=2.答:△ABC的面積是2cm1.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)、勾股定理及勾股定理的逆定理的應(yīng)用,解題的關(guān)鍵是得出中線AD是BC上的高線.26、(1)①1;②CE+AE=BE;(2)①1°;②結(jié)論不變:CE+AE=BE,證明見解析【分析】(1)①證明AB=AD,推出∠ABD=∠D=40°,再利用三角形的外角的性質(zhì)即可解決問(wèn)題.②結(jié)論:CE+AE
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 材料管理員2024年度聘用協(xié)議書
- 2024年餐飲租賃協(xié)議樣本
- 2024年教育大數(shù)據(jù):《黃河落日》教學(xué)課件的數(shù)據(jù)分析
- 探索海洋生物:2024年《觀察魚》課件亮點(diǎn)
- 2024年度修車廠房地租賃協(xié)議示例
- 城市出租車長(zhǎng)期租賃服務(wù)協(xié)議范本
- 咖啡館承接活動(dòng)合同范本
- 墻面工程合同范本
- 2024招生代理業(yè)務(wù)協(xié)議詳細(xì)
- 2024年度個(gè)人租賃協(xié)議法律范文
- 教育新篇章:數(shù)字化轉(zhuǎn)型
- 大學(xué)生職業(yè)生涯規(guī)劃嬰幼兒托育服務(wù)與管理
- 附件華紡星海家園二期項(xiàng)目情況匯報(bào)已開未竣版
- 高中數(shù)學(xué)課本中的定理、公式、結(jié)論的證明
- 冬季安全教育主題班會(huì)PPT課件
- 集團(tuán)公司質(zhì)量管理辦法(共19頁(yè))
- C++程序設(shè)計(jì):第8章 數(shù)組
- 海口市安全生產(chǎn)事故應(yīng)急救援預(yù)案(中安科修編稿)
- 淺談鋼-混凝土疊合板組合梁
- 23001料倉(cāng)制作安裝施工工藝標(biāo)準(zhǔn)修改稿
- “六項(xiàng)機(jī)制”工作實(shí)施方案
評(píng)論
0/150
提交評(píng)論